




# Coen

**Drinking Water Quality Management Plan** 

# + DOCUMENT CONTROL SHEET

| REGISTERED SERVICE PROVIDER:<br>Address: | Cook Shire Council<br>10 Furneaux St<br>Cooktown, Qld, 4895<br>P.O. Box 3 |                                                      |  |  |  |
|------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|--|--|--|
| Contact Details:                         | PHONE:<br>Fax:<br>EMAIL                                                   | 07 4069 5444<br>07 4069 5423<br>MAIL@COOK.QLD.GOV.AU |  |  |  |
| SPID.                                    | 511                                                                       |                                                      |  |  |  |

| ©       |                                   |                        |                  |                  |
|---------|-----------------------------------|------------------------|------------------|------------------|
| VERSION | AUTHOR                            | REVIEWED               | APPROVED         | DATE             |
| V4      | Dr Michael Lawrence (Bligh Tanner | ) Robert Fenn          |                  | 29 March 2016    |
| V4.1    | Dr Michael Lawrence               | Robert Fenn            | Robert Uebergang | 15 April 2016    |
| V4.2    | Reviewed by Dr Robyn Maddalena    | Les Treloar/Wal Welsh  | Robert Uebergang | 23 April 2018    |
| V4.3    | Reviewed by Dr Robyn Maddalena    | Wal Welsh/Cath Hocking | David Klye       | 10 December 2019 |
| V4.4    | Reviewed by Dr Robyn Maddalena    | Wal Welsh/Cath Hocking | David Klye       | 31 March 2020    |
| V4.5    | Reviewed by Dr Robyn Maddalena    | Wal Welsh/Cath Hocking | David Klye       | 31 January 2021  |
| V5      | Reviewed by Dr Robyn Maddalena    | Wal Welsh/Cath Hocking | Peter Tonkes     | 1 June 2022      |





## + CONTENTS

| 1   | COE    | Ν                                                               | . 1 |
|-----|--------|-----------------------------------------------------------------|-----|
|     | 1.1    | Overview                                                        | . 1 |
|     | 1.2    | Water Sources                                                   | . 3 |
|     | 1.3    | Lankelly Creek                                                  | . 4 |
|     | 1.4    | Coen Dam                                                        | . 5 |
|     | 1.5    | Coen Bore Fields                                                | . 6 |
| 2   | INFR   | RASTRUCTURE                                                     | . 7 |
|     | 2.1    | Raw water intakes                                               | . 7 |
|     | 2.1    |                                                                 |     |
|     | 2.1    |                                                                 |     |
|     | 2.2    | Treatment Process                                               |     |
|     | 2.2    |                                                                 |     |
|     | 2.2    |                                                                 |     |
|     | 2.2    |                                                                 |     |
|     | 2.3    | Valving arrangements for different supply options               |     |
|     | 2.4    | Bypasses                                                        |     |
|     | 2.4    |                                                                 |     |
|     | 2.4    |                                                                 |     |
|     | 2.4    |                                                                 |     |
| 3   | RISK   | ASSESSMENT                                                      |     |
|     | 3.1    | Coen Mitigated Risk Assessment                                  | 21  |
|     | 3.2    | Coen Risk Management Improvement Plan                           |     |
|     | 3.3    | Cybersecurity                                                   |     |
|     | 3.4    | Outcome of recent incidents                                     |     |
|     | 3.5    | Chlorate Management Plan                                        |     |
|     |        | RATIONAL PROCEDURES                                             |     |
| 5   |        | RATIONAL AND VERIFICATION MONITORING                            |     |
|     |        |                                                                 |     |
|     | 5.1    | Sampling Locations                                              |     |
| 6   | WAT    | FER QUALITY CHARACTERISATION                                    |     |
|     | 6.1    | Review of the Coen Raw Water data                               | 43  |
|     | 6.2    | Review of the Coen Treated Water data                           |     |
|     | 6.3    | Review of the Coen Reticulation Water data                      | 49  |
|     |        |                                                                 |     |
|     | -      | FIGURES<br>Location of Coen in Cape York                        | 1   |
| -   |        | 2 Location of Coen Water Sources                                |     |
| Fig | gure 3 | B Lankelly Creek Catchment                                      | 4   |
|     |        | Coen Dam Catchment                                              |     |
| _   |        | 5 Location of Coen Bores<br>5 Catchment to tap schematic – Coen |     |
|     |        | 7 Coen Water Treatment Plant Schematic Overview                 |     |
|     |        | 3 Coen Treatment Plant Process Overview                         |     |
| Fig | gure 9 | Ocen WTP                                                        | 13  |





| -igure 10 Reticulation sampling locations | 5 4 | <b>1</b> 0 |
|-------------------------------------------|-----|------------|
|-------------------------------------------|-----|------------|

#### LIST OF TABLES

| Table 1. Coen Rainfall Statistics (Coen Mission Strip, BOM, 1942 – 2018)                | 1  |
|-----------------------------------------------------------------------------------------|----|
| Table 2. Coen Rainfall Statistics (Coen Airport, BOM, 2000 – 2022)                      | 2  |
| Table 3 Scenario 1 Treat Raw Water from the Lankelly Using the DAF Plant                | 14 |
| Table 4 Scenario 2 Treat Raw Water from the Lankelly without using the DAF Plant        |    |
| Table 5 Scenario 3 Treat Raw Water from the Coen Dam using the DAF Plant                | 16 |
| Table 6 Membrane Filter By Pass Valve configuration                                     | 17 |
| Table 7 Roughing Filter Bypass Valve configuration                                      | 18 |
| Table 8 Infrastructure Details – Coen                                                   | 18 |
| Table 9 Coen Risk Assessment for Risk Management Improvement Plan                       | 21 |
| Table 10 Coen Risk Management Improvement Plan                                          | 29 |
| Table 11 Recent water quality incidents                                                 | 31 |
| Table 12 Chlorate Management Plan                                                       | 31 |
| Table 13 Coen WTP Operational Limits                                                    |    |
| Table 14 Cook Shire Council Water and Wastewater procedures                             | 36 |
| Table 15 Reticulation sample locations                                                  | 39 |
| Table 16 Operational/Verification monitoring tables                                     | 41 |
| Table 17 Coen Raw Bore Water Quality (Analysed by NATA Lab)                             | 43 |
| Table 18 Coen Dam Raw Water Quality (Analysed by NATA Lab)                              | 44 |
| Table 19 Coen Lankelly Creek Raw Water quality (Analysed by NATA Lab)                   | 46 |
| Table 20 Coen WTP Final Treated Water quality (Analysed by NATA Lab)                    | 47 |
| Table 21 Coen WTP Final Treated Water quality (Analysed by CSC Coen WTP Operators)      | 48 |
| Table 22 Coen Reticulation Treated Water quality (Analysed by NATA Lab)                 | 49 |
| Table 23 Coen Reticulation Total Coliforms & E.coli (Analysed by NATA Lab and Coen Lab) | 50 |
| Table 24 Coen Reticulation Trihalomethanes and Chlorates (Analysed by NATA Lab)         | 50 |
| Table 25 Coen Raw water E. Coli (Analysed by Coen WTP Lab)                              | 50 |





# + GLOSSARY

| Term    | Definition                                                  |
|---------|-------------------------------------------------------------|
| ADWG    | Australian Drinking Water Guidelines 2011                   |
| CSC     | Cook Shire Council                                          |
| DWDMW   | Department of Regional Development, Manufacturing and Water |
| DWQMP   | Drinking Water Quality Management Plan                      |
| PHR     | Public Health Regulation 2005                               |
| RMIP    | Risk Management Improvement Program                         |
| QH      | Department of Health Queensland                             |
| WSR     | Water Supply Regulation                                     |
| WS(SR)A | Water Supply (Safety and Reliability) Act 2010              |





# 1 COEN

### 1.1 Overview

Coen is a small (~328 people) and very remote and isolated community in Cape York, approximately 400 km from Cooktown, and 250 km from Weipa on the unsealed Peninsula Development Road. This road is the main road route into the mining areas around Weipa. Despite its small size, Coen is a service centre for many other smaller communities in the Cape. However, due to the remoteness of Coen, and the proximity to major mining areas, few people with skills and qualifications remain in Coen, with the result that even minor breakdowns can be difficult to rectify. We therefore have a high reliance on the skills of the WTP operators to undertake preventive maintenance, and to identify and rectify faults promptly.

The community of ~250 will to grow over the next 10 years to approximately 305, with a corresponding increase in water demand from the current 0.3 ML/day to 0.35 ML/day.




Figure 1 Location of Coen in Cape York

Climate: Coen has a distinct wet and dry season and is isolated during the wet season. As a result, it is selfsufficient. The airport remains open most of the time and is accessible unless the Coen River is in flood. Due to this, the water treatment plant maintains critical spares on site, and stores sufficient water treatment chemicals from November/ December to last for ~4-5 months.

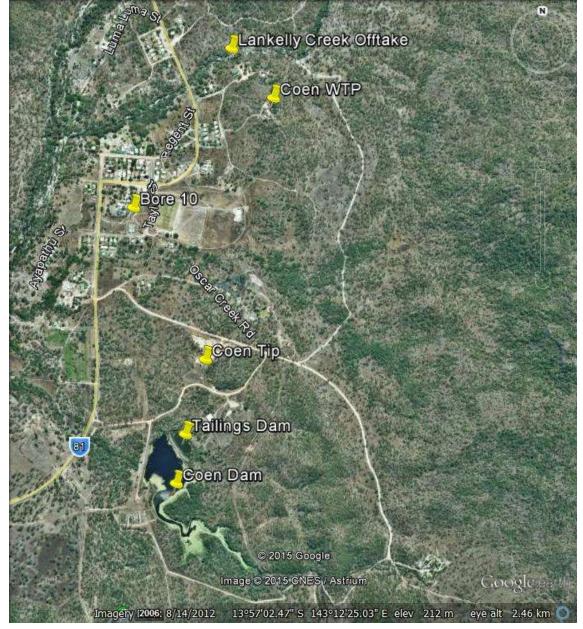
|           | · · , |       |       |       |       | ., ,  |      | ,    |      |       |       |       |        |
|-----------|-------|-------|-------|-------|-------|-------|------|------|------|-------|-------|-------|--------|
| Statistic | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul  | Aug  | Sep  | Oct   | Nov   | Dec   | Annual |
| Mean      | 306.4 | 373.6 | 387.8 | 162.2 | 63.9  | 37.2  | 29.5 | 19.9 | 15.0 | 26.9  | 71.8  | 183.8 | 1684.2 |
| Lowest    | 27.0  | 28.8  | 61.8  | 7.2   | 1.6   | 0.0   | 2.6  | 0.0  | 0.0  | 0.0   | 2.2   | 13.6  | 732.5  |
| 5th %ile  | 81.1  | 84.2  | 95.1  | 17.7  | 10.6  | 3.0   | 4.4  | 1.1  | 0.5  | 0.6   | 4.6   | 14.3  | 965.3  |
| 10th %ile | 93.6  | 151.0 | 110.2 | 36.4  | 14.0  | 8.8   | 6.1  | 2.2  | 1.1  | 1.3   | 5.3   | 20.3  | 1218.0 |
| Median    | 259.4 | 363.8 | 299.6 | 102.6 | 38.0  | 29.6  | 30.4 | 12.1 | 8.4  | 12.3  | 40.5  | 144.6 | 1658.0 |
| 90th %ile | 545.8 | 614.3 | 796.0 | 429.9 | 104.3 | 82.2  | 58.6 | 38.7 | 39.5 | 61.0  | 174.8 | 410.0 | 2373.  |
| 95th %ile | 578.5 | 634.9 | 937.7 | 468.9 | 235.6 | 99.5  | 65.6 | 62.3 | 40.6 | 95.4  | 226.7 | 478.4 | 2408.  |
| Highest   | 720.0 | 866.4 | 995.4 | 560.6 | 299.4 | 109.3 | 73.4 | 83.0 | 51.2 | 197.2 | 479.6 | 615.0 | 2560.  |

| Table 1 Com Daisfall Chatistic   | - / C            |              | 1 1012 2010     |
|----------------------------------|------------------|--------------|-----------------|
| Table 1. Coen Rainfall Statistic | s (Coen Iviissio | n Strip, BUN | 1, 1942 – 2018) |



| Statistic | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul  | Aug  | Sep  | Oct  | Nov   | Dec   | Annual |
|-----------|-------|-------|-------|-------|-------|-------|------|------|------|------|-------|-------|--------|
| Mean      | 311.3 | 321.9 | 380.5 | 158.3 | 49.8  | 35.6  | 21.1 | 14.8 | 8.9  | 23.9 | 62.2  | 170.7 | 1546.5 |
| Lowest    | 95.4  | 25.8  | 99.2  | 14.6  | 12.0  | 0.6   | 1.2  | 0.4  | 0.0  | 0.0  | 0.6   | 12.4  | 578.8  |
| 5th %ile  | 109.4 | 78.9  | 99.6  | 15.6  | 12.8  | 2.2   | 4.2  | 1.6  | 0.6  | 0.9  | 4.1   | 13.0  | 815.3  |
| 10th %ile | 118.2 | 98.6  | 137.6 | 42.4  | 14.2  | 8.2   | 7.0  | 2.1  | 1.0  | 1.8  | 5.5   | 14.3  | 945.4  |
| Median    | 241.4 | 295.3 | 331.0 | 94.8  | 33.2  | 22.4  | 15.0 | 11.2 | 6.2  | 16.0 | 44.5  | 84.1  | 1569.1 |
| 90th %ile | 497.0 | 522.2 | 722.4 | 404.2 | 97.4  | 100.6 | 41.5 | 24.8 | 21.0 | 44.6 | 152.8 | 340.5 | 2224.9 |
| 95th %ile | 579.2 | 543.2 | 901.6 | 410.6 | 137.8 | 102.4 | 43.7 | 34.7 | 24.8 | 85.8 | 156.1 | 398.0 | 2262.2 |
| Highest   | 606.0 | 831.8 | 915.0 | 436.2 | 267.8 | 105.6 | 54.4 | 69.8 | 36.6 | 98.0 | 316.4 | 817.6 | 2273.8 |

### Table 2. Coen Rainfall Statistics (Coen Airport, BOM, 2000 – 2022)

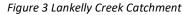


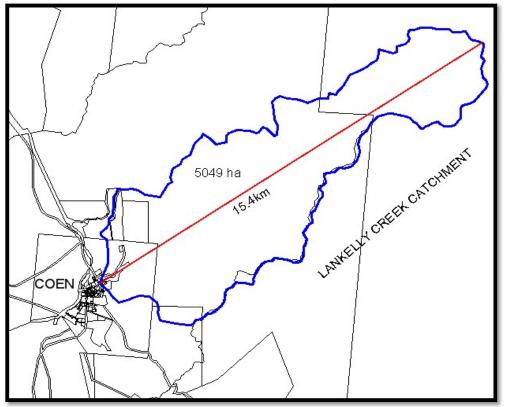



#### **1.2 Water Sources**

Coen has three water sources that supply the town's requirements. These include, in order of preference of use, the Lankelly Creek, Coen Dam, and the Coen bore fields.








### 1.3 Lankelly Creek

When the Lankelly Creek is running, this is the preferred water source for Coen. However, the Lankelly Creek only runs for approximately half the year, depending on the season, as such it provides 40-50% of the Coen water supply. The Lankelly Creek originates high in the rainforest of the McIllwrath Range in KULLA (Kaanju, Umpila, Lama Lama, Ayapthu) national parks approximately 15km to the east of the township. The catchment area of approx. 5000 ha is in pristine rainforest and due to the terrain has very limited human impact. Nonetheless, there is some activity near the offtake, and there are a few cattle in the catchment.







#### 1.4 Coen Dam

The Coen Dam is located ~1.5 km South of Coen on the Oscar Creek. The dam was originally built for a gold mine, but was purchased by Council in the 1990s to ensure that Coen had sufficient water supply. The dam capacity is unknown. The dam fills annually, and the water quality is good, as can be seen in the Google Earth image (Figure 2), the dam has significant amounts of liles but this is not an issue and coverage has not increased for numerous years. The dam can be subject to blooms of cyanobacteria, but not annually and treated with algaecide if required. The dam catchment also originates in the McIllwraith Range in KULLA national parks.

Figure 2 also shows that the water supply dam has a tailings dam immediately adjacent, and the Coen tip is located in a separate sub-catchment north of the dam.

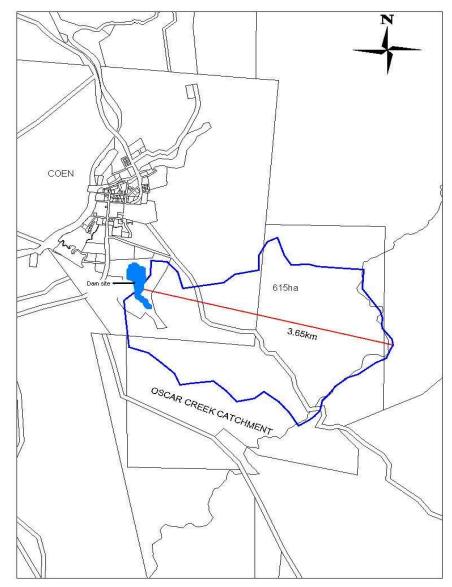



Figure 4 Coen Dam Catchment





#### **1.5** Coen Bore Fields

The Coen bores provide water to the town when the Lankelly Creek and Coen Dam turbidity is high after a rain event in the wet season. Bores 5 and 10 have yields of ~2L/s and Shepherd's Bore has a yield of ~1 L/s. The bores are unable to provide the full supply during the dry season.

The bore report cards for these bores contain almost no information on the date drilled, the depth, or the strata. However, all are believed to be  $\sim$ 50-60 m deep, and tapping the Lankelly Adamellite.

The bores are all located in sheds, with the bore head elevated ~60 cm above ground level. Inspections are done on the sealed bores six monthly to ensure integrity is maintained at all times.

Bore 10 is fitted with 2 pressure lift pumps that pump water from the tank at bore 10 to the reservoir at the water treatment plant. Bore water is chlorine in the water tank at bore 10.

Bores 5 and 10 are recharged with treated water when the Lankelly Creek supply is used, and records maintained of the volume recharged.



Figure 5 Location of Coen Bores





# 2 INFRASTRUCTURE

### 2.1 Raw water intakes

#### 2.1.1 Lankelly Creek

The Lankelly Creek intake consists of a concrete intake well structure built on the side of the Lankelly Creek. The intake has a Johnston Screen that prevents any debris damaging the two submersible pumps that operate as duty/ standby to pump water to the WTP. In the dry season, the Lankelly Creek is usually low turbidity (<5 NTU) and the DAF plant is bypassed directly into the raw water tank to minimise electricity costs.

At the commencement of flows in the Lankelly Creek, the turbidity can be higher, and in these cases, the Lankelly Creek water is treated through the DAF similar to the situation from Coen Dam.

The selection of treatment is at the discretion of the operator.

### 2.1.2 Coen Dam

Coen Dam operates two raw water pumps at the Coen Dam (duty standby arrangements). The raw water pumps are submersible type bore pumps that have a shroud fitted for cooling purposes. They are located in pontoons approximately 20 m from the Dam wall.

A 100m uPVC pipeline 2 km long delivers this water to the treatment plant (directly to the DAF plant).

### 2.2 Treatment Process

### 2.2.1 Process Steps - Lankelly Creek

The process starts when the Clean Water Reservoir either reaches the "Low Level" set point, or an operator overrides the set point to initiate a start.

The Treatment Plant will start automatically on demand, whatever time of the day or night, however it is preferred to control the start (usually early in the morning) so that the operators are working and can monitor treatment processes and perform their daily water quality tests.

The first step of the plant start up is the plant feed pump starts draw down the Raw Water Reservoir. The Lankelly works off a rocker arm switch that has a ball float that pulls it down to start the raw water pumps and stops when the raw water tank is full. The Alum and Caustic chemical dosing pumps start as soon as the plant finishes its first initial start-up backwash.

The primary feed pump draws water from this tank, lowering its level until the Raw Water Start level is reached. This starts the on duty Raw Water pump located in the bottom of the Intake structure in Lankelly Creek.

The chemical dosing skid includes:

- 2x Soda ash dosing pumps
- 2 x Alum dosing pumps
- 2 x Caustic dosing pumps

Soda ash is used intermittently. Soda ash is used to increase the pH in the final water going to the reservoir. Soda ash also slightly raises the alkalinity of the raw water.





There are duty / standby soda ash dosing pumps of 0.065L/m capacity the operator can also select the pump to be on duty. Soda ash is made into an 8% solution from 25 kg bags, and made up in a 1000 litre tank; this generally lasts for several weeks.

There are 2 alum dosing pumps 2 of 0.065 L/m capacity. Alum is the primary coagulant. There are 2 caustic dosing pumps (duty/standby) of 0.065L/m capacity. Caustic Soda is used a pH adjustment during the coagulation process.

The duty / standby alum dosing pumps are alternated weekly. This is done manually by the operator. Liquid alum is now used at the Coen T/Plant and is purchased and supplied in 24 tonne lots as a 47% solution and stored in bulk tanks in Cooktown. 1000L bulkibins are transported to Coen during the dry season and 2 of them are stored there as back up over the wet season. A bulk alum (2200L capacity) storage tank is located in the DAF Shed and alum is transferred to the treatment plant via a transfer pump, when the operator requires it, into a 500L holding tank.

Raw water pumped from the raw water reservoir is dosed with alum and soda ash, which then passes through a spiral chemical mixer prior to the roughing filter. The Lankelly can also be treated through the DAFF.

The roughing filter is a pressure vessel approximately half filled with anthracite which is the filter media. From the roughing filter the water then passes through to the feed tank and from there to the Memcor Continuous Micro Filtration unit at a rate of 7 L/s via the secondary plant feed pump. This rate can be varied by the operator as the raw water pumps have a flow rate of 5.5l/s into the raw water tank. From the CMF plant, the treated water is dosed with caustic soda if the pH of the final water is too low.

At the Coen Water Treatment Plant the filtration process is fully automated and controlled by a PLC. The plant is manned during working hours, and is currently required to run an average of 12 hrs daily. Cook Shire Council operates the plant during the day while its manned that way an operator is on hand should something malfunction.

At the Coen Treatment Plant roughing filter backwashes can be initiated:

- Manually
- Filter run time, (Operator can set this time)
- Head loss across the filter.

Granular media filtration performance can be monitored by sampling the effluent from the roughing filter and checking the turbidity.

Backwash water is sourced from the raw water tank as the turbidity is less than 5 NTU straight from the creek.

Backwashes for the CMF are done on time, transmembrane pressure or operator initiated. Air is used to backwash with only a small amount of water from feed tank used to rinse the membranes. Membrane cleans are done using chlorine or citric acid. The CMF has annual maintenance program when all maintenance is undertaken.

Final water from the plant goes directly to the clean water reservoir. Two recirculation pumps, duty/standby, are connected to the outlet of this tank and recirculate the water within the reservoir. A sodium hypochlorite injector is located on the outlet side of the pumps as well as a sample point for the chlorine analyser. The hypo pumps are controlled by the analyser to a set point that is operator controlled, usually between 0.8 to 1.0 mg/L. This system works very efficiently and maintains a constant residual 24 hours a day.

#### 2.2.2 Process Steps-Coen Dam





The process starts when the clean water reservoir either reaches the "Low Level" set point, or an operator overrides the set point to initiate a start.

The treatment plant will start automatically on demand, whatever time of the day or night, however it is preferred to control the start (usually early in the morning) so that the operators are working and can monitor treatment processes and perform their daily water quality tests.

The first step of the plant start up is the plant feed pump starts draw down the raw water reservoir. The alum and caustic chemical dosing pumps start as soon as the plant finishes its first initial start-up backwash.

The first step of the plant start up is the plant feed pump starts draw down the Raw Water Reservoir. The Coen Dam raw pumps works off a rocker arm switch that has a ball float that pulls it down to start the raw water pumps and stops when the raw water tank is full. The Alum and Caustic chemical dosing pumps start as soon as the plant finishes its first initial start-up backwash.

A 100m uPVC pipeline 2 km long delivers this water to the treatment plant and directly to the Dissolved Air Flotation (DAF) inlet chamber. This chamber is injected with liquid alum and has a mixer fitted to ensure the chemical is well blended with the incoming raw water. From the mixing chamber the water passes through two 150mm transfer pipes into the filtrate tank. The outlet side of these pipes have three nozzles which inject an air saturated solution in which the tiny bubbles lift the flocculent particles to the surface of the tank. This saturated solution is formed in a separate pressure vessel (dispersion vessel) where clean water from the end of the filtrate tank is mixed with high pressure air to form the air saturated solution.

The filtered material called scum is then intermittently drawn off by a series of scrapers which ultimately end up in the backwash dam. The scrapers run time and frequency is operator adjusted, depending on the turbidity of the raw water.

The filtered water from the DAF then flows into the raw water tank where it is then drawn off and filtered in the same process described above for the Lankelly raw water.

#### 2.2.3 Process Steps-Coen Bores

This system consists of three bores - Bore 5, Bore 10 and Shephard's Bore. All three are approximately 50m deep and are equipped with Grundfos submersible pumps. They all feed into a header tank of approximately 8,000 L in capacity which is located adjacent to Bore 10. Bore 5 and 10 have a flow rate of approximately 2L/sec while Shephard's bore is only about 1L/sec.

In the shed in which Bore 10 is housed are two Southern Cross centrifugal lift pumps, which draw the water from the header tank and pump it directly into the town reticulation network. The water is injected with sodium hypochlorite on the outlet manifold of these pumps and the level monitored by the operator to the desirable set point, usually between 0.5mg/L and 0.7mg/l.

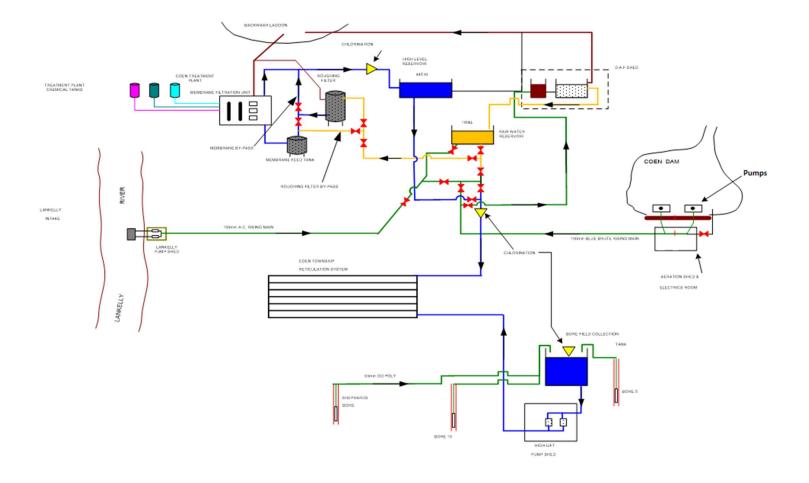
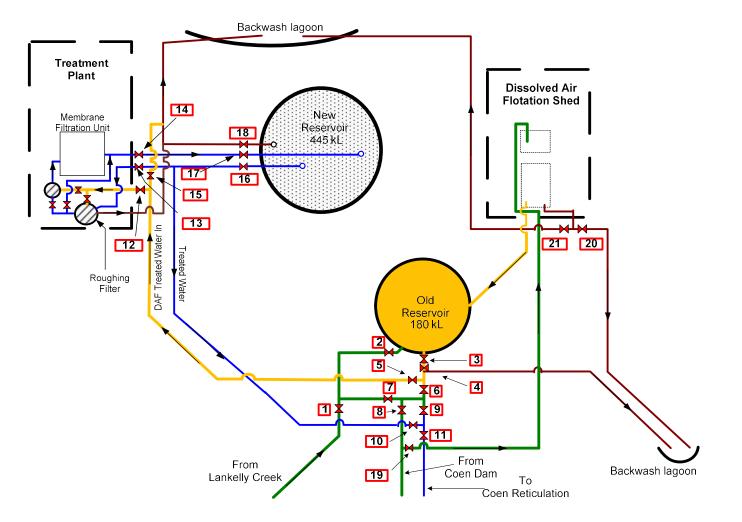
The water that is not used by the consumers makes its way back to the clean water reservoir and if it reaches full capacity, will send a signal via telemetry back to the lift pumps and turn them off. This system is fully automated, but due to the output over demand usually doesn't keep up with the usage. This system is basically used as a backup to the other two supplies and is used to either blend with one of the others so it gets use each year, or is used if either one of the other supplies is offline due to maintenance requirements.

Each year whilst on the Lankelly Creek supply, each bore is recharged for several months to ensure each aquifer has sufficient supply for later in the year when the bores are more likely to be used. No treatment of the bore water is necessary as each one meets the ADWG.





### Figure 6 Catchment to tap schematic – Coen



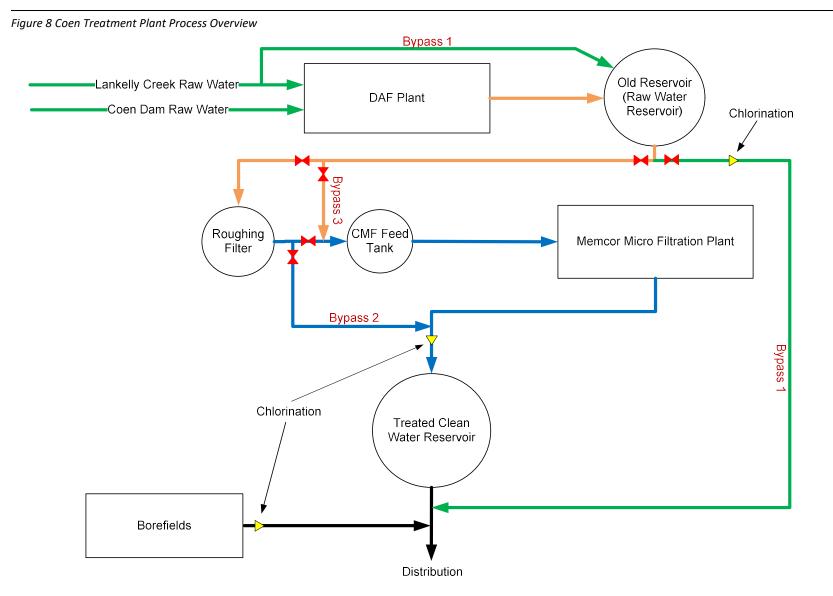




Figure 7 Coen Water Treatment Plant Schematic Overview













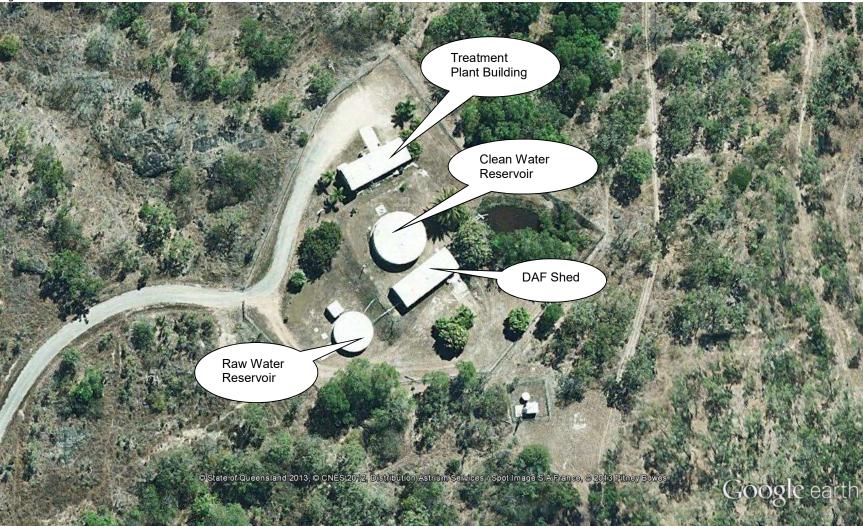



Figure 9 Coen WTP





### 2.3 Valving arrangements for different supply options

The Valve arrangement at the Old Coen Reservoir and at the T/Plant is quite complex, but allows for different intake scenario's, and treatment options. Raw water comes from either the Lankelly Creek or the Coen Dam, or the Borefields can be supplied direct into the distribution with chlorination.

The Lankelly Creek can be treated either using the DAF plant (usually when the raw water has high turbidity's – Wet season) or without the DAF plant (usually when the raw water has low turbidity's – Dry Season). Considerable power savings can be made by not using the DAF plant during the dry season as the Lankelly Creek water quality is particularly good and requires little treatment.

The DAF plant is always used when treating the Coen Dam water as organic material in the Coen Dam water tends to seriously reduce the roughing filter run times, whereas the DAF plant removes the organic material entirely prior to the roughing filter, followed by the membrane micro filtration plant.

| Valve | Valve    | Comments                                                                        |
|-------|----------|---------------------------------------------------------------------------------|
| No    | Position |                                                                                 |
| 1     | Open     | Allows Raw Water from the Lankelly                                              |
| 2     | Closed   | Prevents Raw water entering the Old Reservoir                                   |
| 3     | Open     | Allows DAF Treated Water out of the Old Reservoir                               |
| 4     | Closed   | Only opened when Scouring / Draining the Old Reservoir                          |
| 5     | Open     | Allows DAF Treated Water out of the Old Reservoir and on to the Treatment plant |
| 6     | Closed   | Prevents DAF Treated water from entering the Reticulation as well as preventing |
| 0     |          | Lankelly Raw water from entering the Old Reservoir                              |
| 7     | Open     | Allows Lankelly Raw water to travel to the DAF Plant                            |
| 8     | Open     | Allows Lankelly Raw water to travel to the DAF Plant                            |
| 9     | Closed   | Prevents Raw water from entering the Reticulation                               |
| 10    | Open     | Allows Treated water into the Reticulation                                      |
| 11    | Open     | Allows Treated water into the Reticulation                                      |
| 12    | Open     | Allows DAF Treated water into the T/Plant                                       |
| 13    | Open     | Allows Treated water from the New Reservoir back to the Roughing Filter for     |
| 15    |          | Backwashing                                                                     |
| 14    | Open     | Allows Treated water into the New Reservoir                                     |
| 15    | Closed   | Allows DAF Treated water through to the Backwash Lagoon                         |
| 16    | Open     | Allows Treated water out of the New Reservoir                                   |
| 17    | Open     | Allows Treated water into the New Reservoir                                     |
| 18    | Closed   | Only opened when Scouring / Draining the New Reservoir                          |
| 19    | Open     | Allows Lankelly Raw water to travel to the DAF Plant                            |
| 20/21 | Open /   | Either 20 or 21 open the other closed depending on which B/wash lagoon is being |
| 20/21 | Closed   | used                                                                            |

#### Table 3 Scenario 1 Treat Raw Water from the Lankelly Using the DAF Plant



| Valve | Valve            | Comments                                                                                |
|-------|------------------|-----------------------------------------------------------------------------------------|
| No    | Position         |                                                                                         |
| 1     | Open             | Allows Raw Water from the Lankelly                                                      |
| 2     | Open             | Prevents Raw water entering the Old Reservoir                                           |
| 3     | Open             | Allows Raw Water out of the Old Reservoir                                               |
| 4     | Closed           | Only opened when Scouring / Draining the Old Reservoir                                  |
| 5     | Open             | Allows Raw Water out of the Old Reservoir and on to the Treatment plant                 |
| 6     | Closed           | Prevents Raw water from entering the Reticulation                                       |
| 7     | Closed           | Allows Lankelly Raw water to travel to the DAF Plant                                    |
| 8     | Closed           | Prevents Lankelly water from going back to the Coen Dam                                 |
| 9     | Closed           | Prevents Raw water from entering the Reticulation                                       |
| 10    | Open             | Allows Treated water into the Reticulation                                              |
| 11    | Open             | Allows Treated water into the Reticulation                                              |
| 12    | Open             | Allows Raw water into the T/Plant                                                       |
| 13    | Open             | Allows Treated water from the New Reservoir back to the Roughing Filter for Backwashing |
| 14    | Open             | Allows Treated water into the New Reservoir                                             |
| 15    | Closed           | Allows DAF Treated water through to the Backwash Lagoon                                 |
| 16    | Open             | Allows Treated water out of the New Reservoir                                           |
| 17    | Open             | Allows Treated water into the New Reservoir                                             |
| 18    | Closed           | Only opened when Scouring / Draining the New Reservoir                                  |
| 19    | Closed           | Prevents Lankelly Raw water to travel to the DAF Plant                                  |
| 20/21 | Open /<br>Closed | Either 20 or 21 open the other closed depending on which B/wash lagoon is being used    |

Table 4 Scenario 2 Treat Raw Water from the Lankelly without using the DAF Plant





| Valve | Valve    | Comments                                                                        |
|-------|----------|---------------------------------------------------------------------------------|
| No    | Position |                                                                                 |
| 1     | Closed   | Isolates Raw Water from the Lankelly                                            |
| 2     | Closed   | Prevents Raw water entering the Old Reservoir                                   |
| 3     | Open     | Allows DAF Treated Water out of the Old Reservoir                               |
| 4     | Closed   | Only opened when Scouring / Draining the Old Reservoir                          |
| 5     | Open     | Allows DAF Treated Water out of the Old Reservoir and on to the Treatment plant |
| 6     | Closed   | Prevents DAF Treated water from entering the Reticulation                       |
| 7     | Closed   | Controls flow Direction                                                         |
| 8     | Closed   | Prevents Dam water from going any further forcing Dam water to the DAF Plant    |
| 0     |          | via valve 19                                                                    |
| 9     | Closed   | Prevents DAF Treated water from entering the Reticulation and prevents Treated  |
| 9     |          | water from entering the Old Reservoir                                           |
| 10    | Open     | Allows Treated water into the Reticulation                                      |
| 11    | Open     | Allows Treated water into the Reticulation                                      |
| 12    | Open     | Allows DAF Treated water into the T/Plant                                       |
| 13    | Open     | Allows Treated water from the New Reservoir back to the Roughing Filter for     |
| 15    |          | Backwashing                                                                     |
| 14    | Open     | Allows Treated water into the New Reservoir                                     |
| 15    | Closed   | Allows DAF Treated water through to the Backwash Lagoon                         |
| 16    | Open     | Allows Treated water out of the New Reservoir                                   |
| 17    | Open     | Allows Treated water into the New Reservoir                                     |
| 18    | Closed   | Only opened when Scouring / Draining the New Reservoir                          |
| 19    | Open     | Allows Lankelly Raw water to travel to the DAF Plant                            |
| 20/21 | Open /   | Either 20 or 21 open the other closed depending on which B/wash lagoon is being |
| 20/21 | Closed   | used                                                                            |

Table 5 Scenario 3 Treat Raw Water from the Coen Dam using the DAF Plant



#### 2.4 Bypasses

#### 2.4.1 The Lankelly bypass

Bypass Trigger: Total Treatment Failure

Most Probable cause: Lightning Strike / Severe Electrical or Mechanical Fault

From the early 80's to the mid 90's Coen's Water came solely from the Lankelly creek, untreated but chlorinated and or from the Borefields, again untreated but chlorinated. In the event of a total treatment failure, then the Lankelly Creek water can be supplied directly into the reticulation with chlorination, this method is not a normal practice, but can be achieved in an emergency and will be done in consultation with Queensland Health as a Boil Water Alert may be required. This method of Supply from the Lankelly Creek can only be used during the "Dry Season". This bypass requires constant monitoring of the Chlorine residuals in the Reticulation with chlorine dose rate adjustments, as required.

### 2.4.2 The Raw Water or DAF Treated water bypass

Bypass Trigger: Membrane Filtration Unit Failure

Most Probable cause: Electrical / Mechanical Fault

This is not a normal practice, but can be achieved during a mechanical or in most cases an electrical failure, and including lightning strikes which can happen particularly during the "Wet Season".

The remoteness of Coen often extends the time that a mechanical or electrical fault can be repaired as there is limited technical and electrical expertise in Coen. The Wet season adds the accessibility problem as the road to Coen can be closed due to flooding or wet & boggy conditions during the wet.

Table 6 Membrane Filter By Pass Valve configuration

| Valve  | Valve    | Comments                                                                                                               |
|--------|----------|------------------------------------------------------------------------------------------------------------------------|
| No     | Position |                                                                                                                        |
| AV 4.3 | Closed   | This valve configuration enables the Membrane Filter to be Bypassed.                                                   |
| AV 4.7 | Open     | (To disable the Bypass the valve positions are reversed i.e. Valve AV 4.3 is to be Open & Valve AV4.7 is to be Closed) |
|        |          | Open & valve Av4.7 is to be closed)                                                                                    |





### 2.4.3 The raw water or DAF treated water Roughing Filter bypass

Bypass Trigger: Roughing Filter control, or ancillary equipment failure

Most Probable cause: Electrical / Mechanical Fault

The roughing filter has its own PLC, pumps, valves etc., and is independent from the membrane filtration plant. This has been an advantage in the past as there are not a lot of conditions that affect both plants, except total power failure. Generally, this part of the plant is less complex than the membrane filtration unit and is easier to work on, whereas the membrane plant requires specialist annual servicing and at times specific replacement parts.

The ability to bypass the roughing filter has also proven in the past to be very useful.

Table 7 Roughing Filter Bypass Valve configuration.

| Valve  | Valve    | Comments                                                                                                           |
|--------|----------|--------------------------------------------------------------------------------------------------------------------|
| No     | Position |                                                                                                                    |
| 22     | Open     | This valve configuration enables the Roughing Filter to be Bypassed.                                               |
| AV 4.5 | Closed   | (To disable the Bypass the valve positions are reversed i.e. Valve 22 is to be Closed & Valve AV4.5 is to be Open) |

#### Table 8 Infrastructure Details - Coen

| Lankelly Creek       |                                                                                                        |
|----------------------|--------------------------------------------------------------------------------------------------------|
| Name                 | Lankelly Creek                                                                                         |
| Туре                 | Surface Water                                                                                          |
| % of supply          | 40-50                                                                                                  |
| Reliability          | Lankelly Creek stops flowing each year between July to November, depending on the preceding Wet Season |
| Water quality issues | High Turbidity levels after Storm events / Flooding                                                    |
| Coen Dam             |                                                                                                        |
| Туре                 | Dam                                                                                                    |
| % of supply          | 50-60                                                                                                  |
| Reliability          | Dam fills up after every Wet Season. Only used after Lankelly stops flowing or is too turbid.          |
| Water quality issues | Seasonal Blue-Green algae (Not every year), naturally occurring Arsenic & Iron                         |
| Coen Borefield       |                                                                                                        |
| Туре                 | Network of Bores                                                                                       |
| % of supply          | Backup Only                                                                                            |
| Reliability          | Recharged annually with treated water from the Lankelly Creek.                                         |
| Water quality issues | Total Hardness & TDS Higher than Desirable                                                             |
| Bore 5 and Bore 10   |                                                                                                        |
| Year Bore/s Sunk     | Approx. 1978                                                                                           |
| Bore Casing size     | 150mm                                                                                                  |





| Bore Casing Material                                                 | PVC                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sealed to prevent surface water ingress                              | Yes, Located inside a building                                                                                                                                                                                                                                                                                                                   |
| Sealed to prevent vermin (frogs / snakes etc.)<br>from entering bore | Yes                                                                                                                                                                                                                                                                                                                                              |
| Aquifer Name                                                         | Lankelly Adamellite                                                                                                                                                                                                                                                                                                                              |
| Bore Head Details (Shephard's)                                       |                                                                                                                                                                                                                                                                                                                                                  |
| Year Bore/s Sunk                                                     | Unknown                                                                                                                                                                                                                                                                                                                                          |
| Bore Casing size                                                     | 150mm                                                                                                                                                                                                                                                                                                                                            |
| Bore Casing Material                                                 | PVC                                                                                                                                                                                                                                                                                                                                              |
| Sealed to prevent surface water ingress                              | Yes, Located inside a building                                                                                                                                                                                                                                                                                                                   |
| Sealed to prevent vermin (frogs / snakes etc.) from entering bore    | Yes                                                                                                                                                                                                                                                                                                                                              |
| Aquifer Name                                                         | Lankelly Adamellite                                                                                                                                                                                                                                                                                                                              |
| Source Infrastructure                                                |                                                                                                                                                                                                                                                                                                                                                  |
| Lankelly                                                             | Fixed concrete intake in the creek with two electric submersible pumps pumped through to the Coen Reservoir                                                                                                                                                                                                                                      |
| Dam                                                                  | Two floating pontoons with electrical submersible pumps anchored to fixed position                                                                                                                                                                                                                                                               |
| Bores                                                                | Electrical equipped submersible pumps fitted in each Bore, bore depths are less than 50 metres                                                                                                                                                                                                                                                   |
| Are there any sources that do not                                    | Coen Bores are disinfected only.                                                                                                                                                                                                                                                                                                                 |
| undergo treatment prior to supply?                                   | coeff bores are distinceted only.                                                                                                                                                                                                                                                                                                                |
| Coen Treatment Plant                                                 |                                                                                                                                                                                                                                                                                                                                                  |
| Process                                                              | Process comprises of aeration (Coen dam only) dissolved air<br>floatation (DAF) pressure filtration, micro filtration, and<br>chlorination                                                                                                                                                                                                       |
| Design Capacity (20 hr operation)                                    | 0.45 ML/day                                                                                                                                                                                                                                                                                                                                      |
| Daily flow range                                                     | 0.13 ML/d (Wet Season) – 0.35ML/d (Dry Season)                                                                                                                                                                                                                                                                                                   |
| Chemicals added                                                      | Soda Ash (if required), Liquid Alum, Sodium Hypochlorite and Caustic Soda if required                                                                                                                                                                                                                                                            |
| Standby chemical dosing facilities (Y/N)                             | Yes                                                                                                                                                                                                                                                                                                                                              |
| Water sourced from and %                                             | Water is sourced 60% from the Coen dam and 40% from the<br>Lankelly Creek, and the bores are generally used as a standby                                                                                                                                                                                                                         |
| % of average day demand provided                                     | 100%                                                                                                                                                                                                                                                                                                                                             |
| % of scheme supply<br>Distribution area supplied                     | 100%                                                                                                                                                                                                                                                                                                                                             |
| Bypass                                                               |                                                                                                                                                                                                                                                                                                                                                  |
| Bypass 1                                                             | The Lankelly can bypass all filtration treatment by manual<br>operation of several valves to achieve the bypass. The Raw<br>water from the intake is pumped to the raw water reservoir.<br>From there it can be directed into the reticulation system via<br>several manual valves where it is chlorinated before leaving<br>the T/Plant grounds |
| Bypass 2                                                             | The Raw Water or DAF Treated water can be filtered through<br>the Roughing Filter and bypass the Membrane Filtration Unit<br>(CMF)                                                                                                                                                                                                               |





| Bypass 3                                                                                                  | The Raw Water or DAF Treated water can be filtered through<br>the Membrane Filtration Unit (CMF) bypassing the Roughing<br>Filter |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Are there any sources that <b>do not</b> undergo disinfection prior to supply?                            | No                                                                                                                                |
| Disinfection Coen WTP                                                                                     |                                                                                                                                   |
| Location                                                                                                  | Coen Treatment Plant                                                                                                              |
| Туре                                                                                                      | Sodium Hypochlorite Dosing                                                                                                        |
| Target residual levels                                                                                    | 0.9 mg/L                                                                                                                          |
| Duty/standby                                                                                              | Yes                                                                                                                               |
| Dosing arrangements                                                                                       | Controlled by the feedback from free chlorine residual analyser                                                                   |
| Alarms                                                                                                    | No, Staff on site during working hours and weekends                                                                               |
| Auto shut-off arrangements                                                                                | Controlled by the free chlorine residual analyser with control set points.                                                        |
| Trended on SCADA                                                                                          | No                                                                                                                                |
| Distribution and Reticulation System                                                                      |                                                                                                                                   |
| Pipe material                                                                                             | A.C. UPVC & Poly                                                                                                                  |
| Age range                                                                                                 | A.C. up to 30 Y.O.<br>All new Water mains installed since 1995 have been UPVC with<br>a few small Poly lines                      |
| Approx. % of total length                                                                                 | A.C. 80%, UPVC 10%, Poly 10%                                                                                                      |
| Areas where potential long detention periods could be expected                                            | 1 Area near National Parks Offices has the potential for long detention periods                                                   |
| Areas where low water pressure (e.g. < 12 m)<br>could be expected during peak or other<br>demand periods) | No areas of low water pressure                                                                                                    |
| Coen Clean Water Reservoir                                                                                |                                                                                                                                   |
| Capacity (ML)                                                                                             | 0.445 ML                                                                                                                          |
| Roofed (Y/N)                                                                                              | Yes                                                                                                                               |
| Vermin-proof (Y/N)                                                                                        | Yes                                                                                                                               |
| Runoff directed off roof (Y/N)                                                                            | Yes                                                                                                                               |
| Coen Raw Water Reservoir                                                                                  |                                                                                                                                   |
| Capacity (ML)                                                                                             | 0.18ML                                                                                                                            |
| Roofed (Y/N)                                                                                              | Yes                                                                                                                               |
| Vermin-proof (Y/N)                                                                                        | Yes                                                                                                                               |
| Runoff directed off roof (Y/N)                                                                            | Yes                                                                                                                               |
| Bore 10 Reservoir                                                                                         |                                                                                                                                   |
| Capacity (ML)                                                                                             | 20 kL                                                                                                                             |
| Roofed (Y/N)                                                                                              | Yes                                                                                                                               |
| Vermin-proof (Y/N)                                                                                        | Yes. New tank                                                                                                                     |
| Runoff directed off roof (Y/N)                                                                            | Yes                                                                                                                               |





# **3** RISK ASSESSMENT

### 3.1 Coen Mitigated Risk Assessment

Following the hazard identification and unmitigated risk assessment detailed in the overarching plan, the Coen Scheme risk assessment was undertaken, following the same methodology. Individual process failures were considered, and the mitigated risks calculated. The risk assessment is presented below.

Table 9 Coen Risk Assessment for Risk Management Improvement Plan

| Coen Wa               | Coen Water                                        |                             |             |                                                         |                                                  |             |            |          |             |                                                                    |             |                |           |  |
|-----------------------|---------------------------------------------------|-----------------------------|-------------|---------------------------------------------------------|--------------------------------------------------|-------------|------------|----------|-------------|--------------------------------------------------------------------|-------------|----------------|-----------|--|
|                       | Hazardous                                         | Hazards                     | Unmitigated | Primary                                                 | Other                                            | Mitigated   |            |          |             |                                                                    | Risk Manage | ement Improver | nents     |  |
| Process Step          | Event                                             | managed by<br>same barriers | Risk        | preventive<br>measure                                   | Preventive<br>Measures                           | Consequence | Likelihood | Risk     | Uncertainty | Comments                                                           | 2022/2023   | 2023/2024      | 2024/2025 |  |
| Coen Dam<br>Catchment | Animals in catchment                              | bacteria and<br>virus       | Extreme 20  | disinfection                                            | Coen Dam<br>fenced,<br>DAF,<br>filtration,<br>MF | Major       | Unlikely   | Medium 5 | Certain     | Considered as<br>whole of<br>treatment in<br>absence of<br>failure |             |                |           |  |
| Coen Dam<br>Catchment | Present in<br>catchment -<br>animals              | protozoa                    | Extreme 20  | MF                                                      | Coen Dam<br>fenced,<br>DAF,<br>filtration,<br>MF | Major       | Unlikely   | Medium 5 | Confident   | Considered as<br>whole of<br>treatment in<br>absence of<br>failure |             |                |           |  |
| Coen Dam<br>Catchment | Cross<br>contaminatio<br>n from Coen<br>Landfill. | hazardous<br>waste          | Medium 9    | Landfill is in a<br>different<br>catchment<br>area      |                                                  | Moderate    | Rare       | Low 3    | Estimate    | Groundwater<br>contamination<br>most likely<br>issue.              |             |                |           |  |
| Coen Dam<br>Catchment | Hydrocarbon<br>s in Coen<br>Dam                   | Hydro-<br>carbons           | High 12     | Car bodies<br>have been<br>removed<br>from<br>catchment | DAF,<br>filtration,<br>MF                        | Moderate    | Rare       | Low 3    | Estimate    |                                                                    |             |                |           |  |
| Coen Dam<br>Catchment | Cyanobacteri<br>al bloom                          | Cyano-<br>bacteria          | Medium 8    | DAF and<br>coagulation<br>flocculation                  | filtration,<br>MF,<br>disinfection               | Minor       | Rare       | Low 2    | Reliable    | Small blooms<br>most years, but<br>not every year                  |             |                |           |  |





#### **Coen Water** Mitigated **Risk Management Improvements** Hazards Primary Other Hazardous Unmitigated **Process Step** managed by preventive Preventive Uncertainty Comments Event Risk same barriers measure Measures 2022/2023 Consequence Likelihood Risk 2023/2024 2024/2025 oxidation Coen Dam Cyanobacteri (chlorine and multiple Toxin not Toxins High 12 Moderate Rare Low 3 Reliable Catchment al toxins sufficient supplies common contact time) Raw value is marginally over DAFF Coen Dam Arsenic in Microthe ADWG Arsenic Medium 9 Alum Moderate Rare Low 3 Certain Catchment raw water filtration guideline value Coagulation Average value is 0.115mg/L. Lankelly (DAF) Animals in bacteria and Possible Creek Extreme 20 disinfection filtration, Minor Medium 6 Certain catchment virus Catchment MF Lankelly Present in Cattle numbers (DAF) MF Possible Confident in catchment Creek catchment protozoa Extreme 20 Minor Medium 6 filtration Catchment animals very low Bore-head sealed. Backup supply. Ingress into bacteria and Bores Bores Extreme 20 Disinfection Catastrophic Rare Medium 6 Certain Raw water bore virus inspected E.coli testing every 6 months Bore-head sealed. Ingress into Bore-head Bores Bores protozoa Extreme 20 Catastrophic Rare Medium 6 Confident bore sealed inspected every 6 months Bore pump Failure of multiple Minor High 12 Rare Low 2 Confident Bores failure supply supplies Years of records show that risk Bore Bore Recharge on from chemical chemical Medium 6 Minor Rare Low 2 Certain Recharge Lankelly only Recharge contamination is very rare





| Coen Wa            | Coen Water                                          |                             |             |                                                                                                      |                                                                                                      |              |            |          |               |                                                                                                                                           |               |           |           |
|--------------------|-----------------------------------------------------|-----------------------------|-------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------|------------|----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|-----------|
|                    | Hazardous                                           | Hazards                     | Unmitigated | Primary                                                                                              | Other                                                                                                |              |            |          |               |                                                                                                                                           | ment Improver | nents     |           |
| Process Step       | Event                                               | managed by<br>same barriers | Risk        | preventive<br>measure                                                                                | Preventive<br>Measures                                                                               | Consequence  | Likelihood | Risk     | - Uncertainty | Comments                                                                                                                                  | 2022/2023     | 2023/2024 | 2024/2025 |
| Bore<br>Recharge   | Bore<br>Recharge                                    | protozoa                    | Extreme 20  | Recharge on<br>treated<br>Lankelly<br>water only                                                     | Procedure<br>in place for<br>recharging<br>bores                                                     | Minor        | Rare       | Low 2    | Reliable      |                                                                                                                                           |               |           |           |
| Raw Water<br>Feed  | Raw water<br>main break                             | Failure of supply           | High 10     | 3 sources                                                                                            | mains<br>break<br>procedure<br>WS0002                                                                | Minor        | Rare       | Low 2    | Confident     | Crews available<br>to fix critical<br>issues                                                                                              |               |           |           |
| Raw Water<br>Feedv | Raw water<br>pump failure                           | Failure of<br>supply        | High 10     | 3 sources                                                                                            | duty<br>standby                                                                                      | Minor        | Rare       | Low 2    | Certain       | spare pumps<br>available on site                                                                                                          |               |           |           |
| DAF                | Under dose<br>alum                                  | Protozoa,<br>turbidity      | Extreme 20  | Coagulation<br>available in<br>plant                                                                 | Clarifier<br>monitoring<br>Micro -<br>filtration<br>Online<br>treated<br>water<br>turbidity<br>meter | Major        | Rare       | Medium 5 | Confident     |                                                                                                                                           |               |           |           |
| DAF                | Overdose<br>alum                                    | Aluminium                   | Medium 6    | clarifier<br>monitoring                                                                              | MF                                                                                                   | Minor        | Unlikely   | Low 4    | Confident     |                                                                                                                                           |               |           |           |
| DAF                | poor floc due<br>to low<br>alkalinity               | Protozoa                    | Extreme 20  | soda ash<br>dosing when<br>required for<br>pH<br>adjustment<br>low cattle<br>numbers in<br>catchment | MF                                                                                                   | Catastrophic | Rare       | Medium 6 | Estimate      | not used all the<br>time - changes<br>depending on<br>raw water.<br>Operators<br>monitor<br>alkalinity and<br>determine<br>when required. |               |           |           |
| DAF                | overflow of<br>DAF sludge<br>into raw<br>water tank | Protozoa                    | Extreme 20  | daily<br>monitoring                                                                                  | Roughing<br>filter and<br>MF<br>treatment<br>following<br>DAF                                        | Moderate     | Unlikely   | Medium 6 | Estimate      | Plant checklist<br>includes<br>cleaning of<br>probe to ensure<br>this does not<br>occur                                                   |               |           |           |





#### **Coen Water** Mitigated **Risk Management Improvements** Hazards Primary Other Hazardous Unmitigated **Process Step** managed by preventive Preventive Uncertainty Comments Event Risk same barriers measure Measures 2022/2023 2023/2024 2024/2025 Consequence Likelihood Risk Suggest that during WTP upgrade, Valves are Manual tagged and change locked to valves. prevent DAF Bypass Protozoa Extreme 20 MF Catastrophic Rare Medium 6 Reliable Valve accidental configuration bypass. documented. Upgrade depends on funding. Low priority for tagging. Roughing Serves as a Filtration Filter roughing MF Medium 6 Reliable prefilter. Main Protozoa Extreme 20 Catastrophic Rare (when MF breakthrough filter barrier is MF. operating) Filter Roughing Filtration Filter roughing media turbidity Medium 6 MF Minor Rare Low 2 Confident (when MF breakthrough filter needs to be operating) replaced. Roughing Filtration MF Medium 6 Reliable Filter bypass Protozoa Extreme 20 Catastrophic Rare (when MF operating) SCADA Online turbidity system in meter. Current Roughing Filter conventional Protozoa Extreme 20 place with Catastrophic Rare Medium 6 Reliable filter (No MF) breakthrough filtration daily autodialler monitoring. call out Filter media Roughing Filter roughing turbidity Medium 6 disinfection Minor Unlikely Confident to be Low 4 filter (No MF) breakthrough filter renewed





#### **Coen Water** Mitigated **Risk Management Improvements** Hazards Primary Other Hazardous Unmitigated **Process Step** managed by preventive Preventive Uncertainty Comments Event Risk same barriers measure Measures 2022/2023 Consequence Likelihood Risk 2023/2024 2024/2025 Valve con-Roughing figurations Medium 8 Filter bypass Protozoa Extreme 20 Major Unlikely Reliable filter (No MF) are documented Annual membrane servicing of integrity membranes. Micro-Filter (Pressure TMPs Extreme 20 Confident Membranes Protozoa Catastrophic Rare Medium 6 filtration breakthrough decay tests), monitored replaced in Roughing 2016/2017 filter financial year membrane Online Annual Membrane Micro-Filter integrity turbidity Medium 6 turbidity Minor Rare Low 2 Confident servicing of the replacement filtration breakthrough (Pressure membranes. meter program decay tests) Daily checks PLC plus at WTP and SCADA/ Disinfection overdose Chlorine High 15 Reservoirs. autodialler Minor Unlikely Low 4 Confident Online for high analyser. chlorine Two pumps Daily checks - no auto at WTP and changeover insufficient Reservoirs. - PLC plus Disinfection Extreme 25 Confident bacteria/virus Catastrophic Rare Medium 6 dose SCADA/ Online analyser. autodialler for low MF chlorine SCADA SCADA upgrade upgrade includes auto includes Dosing pump Dual hypo auto change over for Extreme 25 Disinfection bacteria/virus Moderate Unlikely Medium 6 Reliable failure pumps change chlorine pumps – funding over for chlorine dependent pumps –





#### **Coen Water** Mitigated **Risk Management Improvements** Hazards Primary Other Hazardous Unmitigated **Process Step** managed by preventive Preventive Uncertainty Comments Event Risk same barriers measure Measures 2022/2023 2024/2025 Consequence Likelihood Risk 2023/2024 funding dependent ineffective disinfection Disinfection bacteria High 10 disinfection filtration Catastrophic Rare Medium 6 Confident due to turbidity Investigate Chlorate over options for chemical Reliable 0.8 mg/L has chlorate Disinfection chlorate High 12 Moderate Possible Medium 9 breakdown occurred minimizatio n Daily checks, Bore Chlorine High 15 fixed rate Unlikely Medium 6 Confident overdose Moderate Disinfection dosing Additional New tank SCADA installed at Bore Additional Daily checks EDAC auto SCADA insufficient Sealed 10 and new Bore at WTP and Extreme 25 Medium 6 Confident dialler bacteria/virus Catastrophic Rare dosing lines no EDAC Disinfection dose bores Reservoirs. (funding longer above autodialled not ground approved spare pump available at Additional Coen. SCADA Additional Additional EDAC auto SCADA Bore Dosing pump Daily checks, Sealed bacteria/virus Extreme 25 Catastrophic Rare Medium 6 Reliable SCADA will dialler Disinfection failure spare on site bores EDAC include free (funding autodialled chlorine not concentration approved at the reservoir Main treated Treated water reservoir water Ingress into Integrity and residual Extreme 20 Confident bacteria/virus Catastrophic Rare Medium 6 is new, and sealing. chlorine storage/ reservoirs integrity is Reservoirs good.





#### **Coen Water** Mitigated **Risk Management Improvements** Hazards Primary Other Hazardous Unmitigated **Process Step** managed by preventive Preventive Uncertainty Comments Event Risk same barriers measure Measures 2022/2023 2024/2025 Consequence Likelihood Risk 2023/2024 Reservoirs are inspected every 6 months. Treated water Ingress into Integrity and residual New tank at bacteria/virus Extreme 20 Catastrophic Rare Medium 6 Confident Bore 10 Tank Bore 10 storage/ sealing. chlorine Reservoirs Main treated Treated water reservoir Integrity and water Ingress into Extreme 20 Reliable Protozoa Catastrophic Rare Medium 6 is new, and sealing storage/ reservoirs integrity is Reservoirs good. Main treated Treated water reservoir ingress of Integrity and residual water High 12 Major Rare Medium 5 Reliable is new, and amoeba chlorine amoeba sealing storage/ integrity is Reservoirs good. mains break procedure network WS 0002; Ingress of pressure, Reticulation contaminated bacteria/virus Extreme 20 Low Major Unlikely Medium 8 Confident residual water chlorine disinfection flushing procedure WS006 mains ingress of network break contaminated Unlikely Medium 8 Reliable Reticulation protozoa Extreme 20 Major pressure procedure water WS0002 biofilm opportunistic flushing Reticulation High 15 Moderate Rare Low 3 Confident growth pathogens program





#### **Coen Water** Mitigated **Risk Management Improvements** Hazards Primary Other Unmitigated Hazardous **Process Step** managed by preventive Preventive Uncertainty Comments Event Risk same barriers measure Measures 2022/2023 Consequence Likelihood Risk 2023/2024 2024/2025 Coen has 1-2 days independent treated power supply Failure of water Ergon Reticulation Power failure High 15 Moderate Rare Low 3 Confident (generators) supply supply responsible. but can still available to lose for short gravity feed periods change in Reservoir flow rate, low level Disinfection reservoir run alarm residual Medium 6 Insignificate Confident Reticulation low. turbidity Multiple Possible Low 3 mains disturbing days flushing sediment in storage in pipe reservoir Taggle meters investigated system and not integrity, currently viable backflow Reticulation Backflow Extreme 20 Major Rare Medium 5 Estimate for Cook Shire protozoa prevention due to total on new number of installations connections at this stage Failure of Activate System Wide WTP Fire High 10 Catastrophic Rare Medium 6 Reliable supply DMP. Failure of System Wide Drought High 10 Catastrophic Rare Medium 6 Estimate 3 sources supply Generally Lankelly and Failure of only impacts System Wide Flood High 10 Moderate Rare Low 3 Reliable Oscar Creek supply raw water flood each year quality SCADA/elec SCADA/elec SCADA/electric Lightning strikes al upgrade Interference trical trical Lightning Lightning with have occurred upgrade includes upgrade System Wide High 16 protection in Moderate Possible Medium 9 Reliable Strike electronic about 3 times includes includes additional place additional additional equipment per wet season lightning lightning lightning protection in





**Coen Water** 

Event

**Process Step** 

#### Mitigated **Risk Management Improvements** Hazards Primary Other Hazardous Unmitigated managed by preventive Preventive Uncertainty Comments Risk same barriers measure Measures 2022/2023 2023/2024 Consequence Likelihood Risk protection protection in electrical in electrical component component

Page | 29

2024/2025

electrical

component

| System Wide | Cyclone                  | Failure of<br>supply     | High 15    | DMP                                   |                                                                     | Catastrophic | Rare | Medium 6 | Reliable  |                                                                                             |                                 |                                 |
|-------------|--------------------------|--------------------------|------------|---------------------------------------|---------------------------------------------------------------------|--------------|------|----------|-----------|---------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|
| System Wide | Operator<br>error        | any                      | Extreme 25 | training,<br>experience,<br>mentoring | All current<br>operators<br>have Cert<br>III in water<br>operations | Moderate     | Rare | Low 3    | Estimate  |                                                                                             |                                 |                                 |
| System Wide | Complete<br>plant bypass | protozoa and<br>bacteria | Extreme 25 | Staff training                        | Valve<br>configurati<br>on plans<br>available<br>on site            | Major        | Rare | Medium 5 | Confident | Has not<br>happened<br>accidentally,<br>bypass can be<br>used in case of<br>major failures. |                                 |                                 |
| System Wide | Cybersecurity            | Cyber attack             | High 12    | Gateway<br>software                   | Anti-virus<br>and threat<br>detection<br>software                   | Major        | Rare | Medium 5 | Reliable  | Individual log in<br>to SCADA                                                               | SCADA/<br>Electrical<br>upgrade | SCADA/<br>Electrical<br>upgrade |

#### **Coen Risk Management Improvement Plan** 3.2

Table 10 Coen Risk Management Improvement Plan

| Process<br>Step/Component | Hazard   | Risk Management Improvements                                                                                                                                                              | Priority for implementation | Responsible<br>Person | Year                           |
|---------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|--------------------------------|
| DAF Plant                 | Protozoa | <ul> <li>Valves should be tagged and locked to prevent accidental bypass.<br/>This may be done as part of the treatment plant upgrade however<br/>scope has not been finalized</li> </ul> | Medium                      | Project Manager       | 2023/2024 Funding<br>dependant |





| Roughing Filter                                | Turbidity           | <ul> <li>Filter design does not allow safe filter media inspection or<br/>replacement. This should be addressed in the treatment plant<br/>upgrade however scope has not been finalized. Investigation<br/>shows that filter is still producing good turbidity water and is<br/>followed by membrane replacement.</li> </ul> | High   | Project Manager                 | 2023/2024 Funding<br>dependant |
|------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------|--------------------------------|
| Roughing Filter<br>(no MF)                     | Protozoa            | <ul> <li>Filter design does not allow safe filter media inspection or<br/>replacement. This should be addressed in the treatment plant<br/>upgrade however scope has not been finalized. Investigation<br/>shows that filter is still producing good turbidity water and is<br/>followed by membrane replacement.</li> </ul> | High   | Project Manager                 | 2023/2024 Funding<br>dependant |
| Microfiltration                                | Turbidity           | Membrane will be due for replacement                                                                                                                                                                                                                                                                                         | Low    | Manager Water<br>and Wastewater | 2024/2025                      |
| Disinfection and<br>Bore water<br>disinfection | Bacteria/Virus      | • SCADA/WTP upgrade will include auto change over for chlorine pumps.                                                                                                                                                                                                                                                        | High   |                                 | 2023/2024 Funding<br>dependant |
| Disinfection                                   | Chlorate            | Investigate additional solutions.                                                                                                                                                                                                                                                                                            | Medium |                                 | On-going                       |
| System Wide                                    | Lightning<br>Strike | <ul> <li>SCADA/electrical upgrade/WTP upgrade will include additional<br/>lightning protection on electronic and electrical components</li> </ul>                                                                                                                                                                            | High   |                                 | 2023/2024 Funding dependant    |





### 3.3 Cybersecurity

The Cook Shire Council's network is set up to detect cybersecurity breaches. The breach is identified through the internal network security monitoring tools which includes gateways and anti-virus threat detection.

In the instance of a cybersecurity attack that gets through, the Council IT department would try to detect its origin, look at removing the computer from the network, restore information from backups.

To date, there have been no detectable cyber-attacks on our SCADA systems in Council.

Changes made to the Water Section in the cyber security space include, separate log in for individual employees when logging onto the SCADA system and the end of support for Windows 7 which has forced Council to migrate SCADA control software to the Windows 10 operating system.

All cyber security incidents/breaches are reported to the QGCIO. The details for the QGCIO are: Queensland Government Information Security Virtual Response Team (QGISVRT). Phone: 07 3215 3951 Email: <u>qgisvrt@qld.gov.au</u> Website: <u>www.qgcio.qld.gov.au</u>

### **3.4 Outcome of recent incidents**

Recent incidents for the Coen Water Scheme from 01 January 2021 to 31 March 2022.

Table 11 Recent water quality incidents

| Date sample taken | Place      | Parameter | Concentration | Action Plan                                                                                                                                                                                                                           |
|-------------------|------------|-----------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 07 October 2021   | Coen Depot | Chlorate  | 1.10 mg/L     | Flushing of water main in town<br>and continued monitoring of<br>chlorate                                                                                                                                                             |
| 01 March 2020     | Coen       | E.coli    | Not done      | Airplane disruptions during Covid<br>19 meant samples could not get<br>to Cairns for analysis. In house<br>Colisure analysis has now been<br>introduced into Coen with<br>quarterly E. coli verification to a<br>NATA registered lab. |

#### 3.5 Chlorate Management Plan

The chlorate management plan below is based on the qldwater Chlorate Fact Sheet – Managing Chlorate Residuals.

Table 12 Chlorate Management Plan

| Potential mitigation action | Action                                                        | Future Action |
|-----------------------------|---------------------------------------------------------------|---------------|
| Reduce age of chlorine      |                                                               |               |
| Work with supplier to       | Coen orders 16 x 200L drums chlorine at a time. This is       | No action     |
| reduce chlorate in source   | approximately a three month supply (also supplied to the Coen |               |
| material                    | STP). Before the wet season, 5 months of supply is purchased  |               |





|                                                                                                                | in case the road is closed. Chlorine is not currently tested for solution strength or pH.                                                                                                                                                                                         |                 |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Work with supplier to<br>minimise the time from<br>manufacture to delivery and<br>use                          | Coen is a remote community in Cape York. This would be difficult to achieve.                                                                                                                                                                                                      | No action       |
| Increase turn-over/delivery of hypochlorite                                                                    | Coen is a remote community in Cape York. This would be difficult to achieve. Population is 328.                                                                                                                                                                                   | No action       |
| Replace oversized tanks                                                                                        | Coen has 1 x 400L tank. This is filled as required. Operator is on-site during the day.                                                                                                                                                                                           | No action       |
| Reduce rate of chlorate form                                                                                   | ation prior to use                                                                                                                                                                                                                                                                |                 |
| Dilute stock concentrations                                                                                    | Chlorine is diluted 200 chlorine to 180 water.                                                                                                                                                                                                                                    | Action complete |
| Store solution in cool area<br>and out of direct sunlight                                                      | Coen chlorination system is inside the WTP shed. It is out of<br>direct sunlight. The roller door to the treatment plant is up<br>during the day and there are louvres on the opposite wall to<br>provide air flow through the WTP.                                               | No action       |
| Control the pH of stored<br>hypochlorite solutions at pH<br>11-13, even after dilution                         | Action: This option will be investigated.                                                                                                                                                                                                                                         | Investigate     |
| Rinse sodium hypochlorite<br>storage tanks between<br>refills                                                  | When the chlorine tank is low, small amount of chlorine left is discarded. Tank is cleaned out each time before refilled with chlorine. This occurs on average every 3-4 weeks.                                                                                                   | Continue        |
| Ensure processes and mainte                                                                                    |                                                                                                                                                                                                                                                                                   |                 |
| Optimise the chlorination<br>process to avoid high doses<br>of chlorine                                        | Set point for Chlorine disinfection levels in Coen is 0.9 mg/L.<br>This cannot be lower and still maintain disinfection to the end<br>of the mains.                                                                                                                               | No action       |
| Optimize the coagulation,<br>flocculation, sedimentation,<br>filtration processes to<br>reduce chlorine demand | Water goes through a Dissolved air floatation unit, coal filter<br>and then through membrane filtration. Alum is used as<br>coagulant. Water is very low in alkalinity which makes the floc<br>very small. Optimization of the plant has been done over its 27<br>year life span. | No action       |
| Reduce chlorine demand of<br>reservoirs and networks<br>caused by biofilm and<br>sediment                      | Coen reservoir is cleaned every two years. Water mains are<br>flushed once a year. The water team does not have the<br>capacity to increase the frequency of these options.                                                                                                       | No action       |
| Explore alternative disinfection                                                                               | on options                                                                                                                                                                                                                                                                        | 1               |
| Converting to disinfection using chlorine gas                                                                  | This option is considered too dangerous. The WTP is situated<br>on a hill above town. Qldwater Disinfection Options for Water<br>Service Providers Guidance Paper lists chlorine gas as high risk<br>for very small remote places.                                                | No action       |
| Convert to onsite generation of chlorine                                                                       | This will be investigated                                                                                                                                                                                                                                                         | Investigate     |
| Additional Council Actions                                                                                     |                                                                                                                                                                                                                                                                                   | 1               |
| Chlorate samples taken every three months                                                                      | Sampling includes E. coli and therefore the tap is sterilized<br>before samples are taken. Staff have two options. Option 1 is<br>the use of alcohol wipes to sterilize the tap. Samples can then<br>be taken (including chlorate) or Option 2 is to take the chlorate            | Continue        |



|                                              | sample, then sterilize the tap with liquid chlorine and then take<br>the E. coli sample last.                                                                 |          |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Chlorate detected                            | If chlorate is detected, the regulator and QH will be notified                                                                                                | Continue |
| Chlorate detected in two consecutive samples | If chlorate is detected in two consecutive samples then a "do<br>not consume" notice will be discussed with QH. This is<br>considered a long-term exceedance. | Continue |



# **4** OPERATIONAL PROCEDURES

In general CSC has few specific documented procedures for each process step as required under the ADWG. However, the operational limits are well defined, and actions are understood by the WTP operators. The following table forms the basis of more comprehensive operational procedures that will be developed over time.

Table 13 Coen WTP Operational Limits

| Process Step<br>/Location in<br>System  | Parameter              | Operational<br>Monitoring | Target Range                                           | Monitoring<br>Frequency | Operator Report to<br>Intervention Supervisor<br>Range Range |                  | Corrective Actions/ Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|-----------------------------------------|------------------------|---------------------------|--------------------------------------------------------|-------------------------|--------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                         | рН                     | Y                         | <6.6 or > 8.4<br>6.6 - 6.8 or 7.6 - 8.4<br>6.8 - 7.6   | Generally<br>daily      | <6.6 or >8.4                                                 | <6.5 or >8.5     | <ul> <li>If low pH, check caustic dosing pump (or soda ash)<br/>Malfunction of caustic pump will cause pH to fall.</li> <li>If high pH, check caustic dosing pump (or soda ash).<br/>The caustic dose rate may be too high. Check alum<br/>pump. If alum pump malfunctions and caustic is still<br/>being pumped then pH will be high.</li> </ul>                                                                                                                                                                 |  |
| t Plant<br>d Water                      | Turbidity              | Y                         | >2<br>>0.3 - 1 NTU<br>< 0.2 NTU                        | Generally<br>daily      | 0.3 – 1 NTU                                                  | >1 NTU           | <ul> <li>If turbidity is over 0.3 NTU, chemical dosing may not be correct. Corrective actions include:         <ul> <li>check alum pump,</li> <li>check dose rate,</li> <li>perform jar testing,</li> <li>reset plant to new dose if required,</li> <li>retest turbidity.</li> </ul> </li> <li>Plant will shut down at 2 NTU</li> </ul>                                                                                                                                                                           |  |
| Treatment Plant<br>Final Filtered Water | Chlorine -<br>Residual | Y                         | <0.4 & >3mg/L<br>0.4 – 0.6 and >2mg/L<br>0.6 -1.8 mg/L | Generally<br>daily      | <0.6 or >2.0 mg/L                                            | <0.4 and >3 mg/L | <ul> <li>If chlorine is above 2.0mg/L - Check operation of chlorine dosing equipment. Check chlorine analyser is reading accurately using hand held analyser. Decrease chlorine dose as chlorine may have been added without dilution.</li> <li>If chlorine is below 0.4mg/L - Check operation of chlorine dosing equipment, ensure no air bubbles in chlorine line. Check chlorine tank levels to ensure sufficiently chlorine. Check chlorine analyser using hand held unit. Increase chlorine dose.</li> </ul> |  |
|                                         | Colour                 | Y                         | > 12 Hu<br>2 – 12 Hu<br><2 Hu                          | Generally<br>weekly     | 2 – 12 Hu                                                    | >12 Hu           | <ul> <li>Chemical Dosing not correct / Coagulation pH not at<br/>optimum point (5.8 - 6), perform jar testing to<br/>determine correct chemical doses, reset plant to new<br/>dose, retest Colour</li> </ul>                                                                                                                                                                                                                                                                                                      |  |





## Coen Site Based Drinking Water Quality Management Plan

## Page **|35**

|  | Aluminium | Y |  | >0.15 mg/L<br>0.05 - 0.15 mg/L<br>0.0 -0.05 mg/L | Generally<br>weekly | 0.05 – 0.15 mg/L | >0.15 mg/L | <ul> <li>Chemical Dosing not correct / Coagulation pH not at<br/>optimum point (5.8 - 6), perform jar testing to<br/>determine correct chemical doses, reset plant to new<br/>dose, retest Aluminium</li> </ul> |
|--|-----------|---|--|--------------------------------------------------|---------------------|------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|-----------|---|--|--------------------------------------------------|---------------------|------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|





Documented procedures for Water and Wastewater are listed below:

#### Table 14 Cook Shire Council Water and Wastewater procedures

| Number  | Documented Procedure Name                                                     | Date of last<br>revision | Area         |
|---------|-------------------------------------------------------------------------------|--------------------------|--------------|
| WS 0001 | Safe Handling of Sodium Hypochlorite                                          | 2021                     | All          |
| WS 0002 | Water Main Repairs                                                            | 2021                     | Reticulation |
| WS 0003 | DWQMP Annual Report Creation                                                  | 2021                     | Admin        |
| WS 0004 | SWIM Annual Report Creation                                                   | 2021                     | Admin        |
| WS 0005 | E. Coli Detection Reporting                                                   | 2021                     | Admin        |
| WS 0006 | Water Mains Flushing and flushing for Low reticulation free chlorine residual | 2021                     | Reticulation |
| WS 0007 | Water Reservoir Cleaning                                                      | 2021                     | Reticulation |
| WS 0008 | Water Sampling                                                                | 2021                     | Reticulation |
| WS 0009 | Water Testing Coliforms & E.coli Analysis                                     | 2021                     | Annan Lab    |
| WS 0010 | Water Service - New Installation                                              | 2021                     | Reticulation |
| WS 0011 | Water Mains - New Installation                                                | 2021                     | Reticulation |
| WS 0012 | CIP Procedure Laura                                                           | 2021                     | Treatment    |
| WS 0013 | Water Service Repairs                                                         | 2021                     | Reticulation |
| WS 0014 | Operation Procedure for Lakeland WTP                                          | 2021                     | Reticulation |
| WS 0015 | Chlorine Analysers Maintenance Procedure                                      | 2021                     | Treatment    |
| WS 0016 | Jar Testing Procedure                                                         | 2021                     | Treatment    |
| WS 0017 | Incident Notification                                                         | 2021                     | Admin        |
| WS 0018 | Coagulation & Flocculation                                                    | 2021                     | Treatment    |
| WS 0019 | Flow meter Calibration                                                        | 2021                     | Admin        |
| WS 0020 | Working around sewage                                                         | 2021                     | Sewage       |
| WS 0021 | High Pressure Sewer Cleaning                                                  | 2021                     | Sewage       |
| WS 0022 | Troubleshooting DAF Plant Coen                                                | 2021                     | Treatment    |
| WS 0023 | Running the Coen Bore field                                                   | 2021                     | Treatment    |





| WS 0024 | Recharging the Coen Bores                                                                      | 2021 | Treatment              |
|---------|------------------------------------------------------------------------------------------------|------|------------------------|
| WS 0025 | Using Hydrochloric Acid (Splash Park)                                                          | 2021 | Reticulation           |
| WS 0026 | Wastewater Sampling at the Coen STP<br>(NATA lab)                                              | 2021 | Sewage                 |
| WS 0027 | Cleaning Baskets                                                                               | 2021 | Sewage                 |
| WS 0028 | Dealing with high flow at the Cooktown<br>STP                                                  | 2021 | Sewage                 |
| WS 0029 | Lakeland WTP Generator                                                                         | 2021 | Treatment              |
| WS 0030 | Cooktown STP Generator                                                                         | 2021 | Sewage                 |
| WS 0031 | Detection of a chemical parameter above<br>ADWG                                                | 2021 | Admin                  |
| WS 0032 | Splash Park Procedure                                                                          | 2021 | Reticulation           |
| WS 0033 | Cyclone Preparation procedure - Lakeland,<br>Laura and Cooktown (Using bore fields)            | 2021 | Reticulation/Treatment |
| WS 0034 | Cyclone Preparation procedure - Lakeland,<br>Laura and Cooktown (not using the bore<br>fields) | 2021 | Reticulation/Treatment |
| WS 0035 | Cyclone Preparation procedure - Coen                                                           | 2021 | Reticulation/Treatment |
| WS 0036 | Procedure in the event of environmental Incident                                               | 2021 | Sewage                 |
| WS 0037 | Boiled water alert (Media coordinator)                                                         | 2021 | Media liaison          |
| WS 0038 | Fire Service configuration and metering procedure                                              | 2021 | Admin and Reticulation |
| WS 0039 | E. coli analysis using Idexx                                                                   | 2021 | Annan and Coen WTPs    |
| WS 0040 | High Level new chlorine analyser<br>maintenance at the High Level Reservoir                    | 2021 | Reticulation           |
| WS 0041 | Power Outage at the Cooktown STP                                                               | 2021 | Cooktown Sewage        |
| WS 0042 | Pressure Decay Test Coen WTP                                                                   | 2021 | Coen WTP               |
| WS 0043 | Pressure Decay Test Laura WTP                                                                  | 2021 | Laura WTP              |
| WS 0044 | Lock out, tag out procedure                                                                    | 2021 | All                    |
| WS 0045 | Chemical Batching – Soda Ash – Annan<br>WTP                                                    | 2021 | Annan WTP              |
| WS 0046 | Chemical Batching – Lime – Annan WTP                                                           | 2021 | Annan WTP              |
| WS 0047 | Chemical Batching – Alum – Annan WTP                                                           | 2021 | Annan WTP              |
| WS 048  | Running the Annan Generator                                                                    | 2021 | Annan WTP              |









# **5** OPERATIONAL AND VERIFICATION MONITORING

Operational monitoring is the monitoring undertaken by CSC to ensure that the water treatment barriers are operating effectively. This monitoring provides confidence that we are producing safe water. Operational monitoring is conducted by the WTP operators. Where any value exceeds the ADWG health guideline in treated or reticulated water, the Manager Water and Wastewater is immediately informed – this initiates a Medium level incident.

Verification monitoring is undertaken to ensure that the water that we supplied to our customers did meet the ADWG health guideline values. *E coli* sampling is predominantly internal, and all other monitoring is undertaken externally. Certificates of analysis are reviewed immediately upon receipt, and if a value exceeds the ADWG Health Guideline value, the Manager Water and Wastewater is informed, and the incident and emergency response activated (this is defined as a Medium level incident). Verification monitoring data is reported in our annual report.

## 5.1 Sampling Locations

Operational monitoring occurs at a number of steps through the WTP process, and these are identified in the tables that follow.

Additionally, there are sample locations for both operational and verification monitoring that are located on the trunk main, at reservoirs, and in the reticulation network. These are detailed below.

| Sample Location Name         | Street Name                                | Site Chosen Because                                          | GPS Coordinates *                 |
|------------------------------|--------------------------------------------|--------------------------------------------------------------|-----------------------------------|
| Kindy Corner                 | Cnr Peninsular Dev. Rd and<br>Reservoir Rd | Water Main "Tees" at<br>this point and close to<br>the Kindy | 13°56'38.31"S -<br>143°12'11.52"E |
| Heritage House               | Regent Street                              | Ease of access and in the centre of the town                 | 13°56'39.41"S -<br>143°11'56.84"E |
| Coen School                  | Taylor Street                              | Central, and close to the<br>School                          | 13°56'43.83"S -<br>143°11'59.12"E |
| Cultural Centre              | Shephard Street                            | Towards the "End of<br>Line"                                 | 13°56'58.55"S -<br>143°11'53.53"E |
| Guest House                  | Regent Street                              | Central and "Ease of<br>Access"                              | 13°56'39.19"S -<br>143°12'2.22"E  |
| Old National Parks<br>Office | Coleman Close                              | Towards the "End of<br>Line"                                 | 13°56'23.50"S -<br>143°11'57.44"E |
| Lutheran Church              | Off Port Stewart Road                      | Towards the "End of<br>Line"                                 | 13°56'58.37"S -<br>143°12'1.14"E  |
| CSC Depot                    | Lankelly Drive                             | Towards the "End of<br>Line"                                 | 13°56'27.13"S -<br>143°12'17.21"E |
| Okalaka Street               | Okalaka Street Okalaka Street              |                                                              | 13°56'24″S - 143°12'05"E          |

Table 15 Reticulation sample locations

\* GPS co-ordinates extracted from Google Earth

The above sample locations give a good cross section of the town including the dead end areas as shown in the figure below.





Figure 10 Reticulation sampling locations







| Process Step                               | Devenuestor                                                                                                                                                                           | Sampling                                                |           |                   | Is this sample<br>Verified by a | Operational Monitoring Comments                                                       |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------|-------------------|---------------------------------|---------------------------------------------------------------------------------------|--|
| / Location in<br>System                    | Parameter                                                                                                                                                                             | Location                                                | Frequency | Туре              | NATA registered<br>Lab          |                                                                                       |  |
|                                            | рН                                                                                                                                                                                    |                                                         | Daily     | Grab              | Y                               |                                                                                       |  |
| ant                                        | Alkalinity                                                                                                                                                                            |                                                         | Weekly    | Grab              | Y                               |                                                                                       |  |
| ter Pl                                     | Turbidity                                                                                                                                                                             |                                                         | Daily     | Grab              | Y                               | Analysed by Cook Shire Council staff at the                                           |  |
| ne ne                                      | Colour                                                                                                                                                                                |                                                         | Daily     | Grab              | Y                               | Coen WTP. Verified quarterly by NATA                                                  |  |
| Treatment Plant<br>Raw water               | Electrical Conductivity                                                                                                                                                               | Coen Raw Water<br>tap                                   | Weekly    | Grab              | Y                               | registered lab                                                                        |  |
| Treatment Plant<br>Raw water               | <b>Physical / Chemical Analysis.</b><br>pH, Electrical Conductivity, Alkalinity, Chloride,<br>Ca, Mg, Na, Fluoride, Total Hardness,<br>Turbidity, Colour apparent, Salinity & Silicon | Straight from water source                              | Quarterly | Grab Sample       | Y                               | N.A.T.A. Certified Lab                                                                |  |
| Treatm<br>Raw                              | <b>Metals Analysis</b><br>Includes parameters:<br>As, Ba, Cd, Co, Cu, Fe, Mn, Ni                                                                                                      | water source                                            | Quarterly | Grab Sample       | Y                               | N.A.T.A. Certified Lab                                                                |  |
|                                            | E. coli                                                                                                                                                                               | Individual bore:<br>Shepard's bore<br>Bore 5<br>Bore 10 | Yearly    | Grab Sample       | N                               | Coen Lab                                                                              |  |
| Coen Bores                                 | Physical / Chemical Analysis.<br>pH, Electrical Conductivity, Alkalinity, Chloride,<br>Ca, Mg, Na, Fluoride, Total Hardness,<br>Turbidity, Colour apparent, Salinity & Silicon        | Bore 10 combined bore sample                            | Yearly    | Grab Sample       | Y                               | N.A.T.A. Certified Lab                                                                |  |
|                                            | Metals Analysis<br>Includes parameters:<br>As, Ba, Cd, Co, Cu, Fe, Mn, Ni                                                                                                             | Bore 10 combined bore sample                            | Yearly    | Grab Sample       | Y                               | N.A.T.A. Certified Lab                                                                |  |
| 4                                          | рН                                                                                                                                                                                    |                                                         | Daily     | Grab              | Y                               |                                                                                       |  |
| Treatment Plant<br>Final Filtered<br>Water | Alkalinity                                                                                                                                                                            |                                                         | Weekly    | Grab              | Y                               | 1                                                                                     |  |
|                                            | Turbidity                                                                                                                                                                             |                                                         | Daily     | Grab              | Y                               | Analysed by Cook Shire Council staff at the<br>Coen WTP. Verified quarterly at a NATA |  |
| atır<br>N                                  | Colour                                                                                                                                                                                |                                                         | Daily     | Grab              | Y                               | registered lab                                                                        |  |
| Tre<br>Fi                                  | Electrical Conductivity                                                                                                                                                               |                                                         | Weekly    | Grab              | Y                               | 1                                                                                     |  |
|                                            | Free Chlorine Residual                                                                                                                                                                |                                                         | Daily     | Continuous / Grab | N                               |                                                                                       |  |





|                   | Aluminium                                                                                                                                                                      |                                                                                                                               | Weekly    | Continuous / Grab | Y | Verified Twice a year by NATA registered lab                        |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|---|---------------------------------------------------------------------|
|                   | Free Chlorine Residual                                                                                                                                                         |                                                                                                                               | On Line   | Continuous/ Grab  | N | Chlorine residual on display on Chlorine<br>analyser in dosing room |
|                   | Physical / Chemical Analysis.<br>pH, Electrical Conductivity, Alkalinity, Chloride,<br>Ca, Mg, Na, Fluoride, Total Hardness,<br>Turbidity, Colour apparent, Salinity & Silicon | Coen Final<br>Treated Water<br>tap                                                                                            | Quarterly | Grab Sample       | Y | N.A.T.A. Certified Lab                                              |
|                   | Metals Analysis<br>Includes parameters: As, Al, Ba, Cd, Co, Cu, Fe,<br>Mn, Ni                                                                                                  |                                                                                                                               | Quarterly | Grab Sample       | Y | N.A.T.A. Certified Lab                                              |
|                   | Total Coliforms and E. Coli                                                                                                                                                    |                                                                                                                               | Weekly    | Grab Sample       | Y | Analysed by CSC Coen Lab                                            |
|                   | Chlorine Residual                                                                                                                                                              |                                                                                                                               | Monthly   | Grab Sample       | Y |                                                                     |
|                   | рН                                                                                                                                                                             | <ul> <li>9 Locations in</li> <li>Coen</li> <li>Systematically</li> <li>rotated through</li> <li>sites in table 10.</li> </ul> | Monthly   | Grab Sample       | Y | Analyzed by Cools China Council at -ff -t th -                      |
|                   | Turbidity                                                                                                                                                                      |                                                                                                                               | Monthly   | Grab Sample       | Y | Analysed by Cook Shire Council staff at the                         |
|                   | Colour                                                                                                                                                                         |                                                                                                                               | Monthly   | Grab Sample       | Y | Coen WTP. Verified quarterly by NATA<br>registered lab              |
|                   | Electrical Conductivity                                                                                                                                                        |                                                                                                                               | Monthly   | Grab Sample       | Y |                                                                     |
|                   | Alkalinity                                                                                                                                                                     |                                                                                                                               | Monthly   | Grab Sample       | Y |                                                                     |
| culation          | Physical / Chemical Analysis.<br>pH, Electrical Conductivity, Alkalinity, Chloride,<br>Ca, Mg, Na, Fluoride, Total Hardness,<br>Turbidity, Colour apparent, Salinity & Silicon |                                                                                                                               | Quarterly | Grab Sample       | Y | N.A.T.A. Certified Lab                                              |
| Coen Reticulation | Metals Analysis<br>Includes parameters: As, Al, Ba, Cd, Co, Cu, Fe,<br>Mn, Ni                                                                                                  | One site per<br>month                                                                                                         | Quarterly | Grab Sample       | Y | N.A.T.A. Certified Lab                                              |
|                   | Trihalomethanes including Chloroform,<br>Bromodichlormethane,<br>Dibromochloromethane, Bromoform and Total<br>Trihalomethanes. Oxyhalides including<br>chlorate                |                                                                                                                               | Quarterly | Grab Sample       | Y | N.A.T.A. Certified Lab                                              |
|                   | Total Coliforms and E. Coli                                                                                                                                                    | As above. Two samples per week                                                                                                | Weekly    | Grab Sample       | Y | CSC Coen Lab. Verified quarterly by NATA registered lab             |

- Samples that are verified in a NATA registered Lab for physical/chemical are split in half. Half is analysed by CSC staff at the Coen WTP and the other half is sent to a NATA certified laboratory.
- All water samples are collected by the Water Treatment Plant operators all of which have had the appropriate training to collect water samples. Samples collected for verification are transported to Cairns by Air / Road Transport, and analysed by NATA accredited Laboratories, currently Cairns Regional Council.





# **6** WATER QUALITY CHARACTERISATION

# 6.1 Review of the Coen Raw Water data

Table 17 Coen Raw Bore Water Quality (Analysed by NATA Lab)

| Parameter                    |                    | Time             | No of samples<br>taken in time | Summary of results |              |              |  |
|------------------------------|--------------------|------------------|--------------------------------|--------------------|--------------|--------------|--|
|                              | Sampling Location  | Period           | period                         | Min<br>Value       | Max<br>Value | Avg<br>Value |  |
| Alkalinity mg/L              |                    |                  | 5                              | 16.0               | 260.0        | 103.9        |  |
| Calcium mg/L                 |                    |                  | 5                              | 2.4                | 77.0         | 27.1         |  |
| Chloride mg/L                | es                 |                  | 5                              | 7.7                | 209.0        | 102.6        |  |
| Colour Apparent Pt/Co        | Bores              | 52               | 5                              | 14.0               | 110.0        | 50.7         |  |
| Electrical Conductance µS/cm | Sampled from the E | to 31 March 2022 | 5                              | 1.4                | 1,400.0      | 405.6        |  |
| Fluoride mg/L                |                    |                  | 5                              | 0.09               | 1.10         | 0.04         |  |
| Total Hardness mg/L          | lr oi              |                  | 5                              | 9.8                | 340.0        | 118.0        |  |
| Magnesium mg/L               | ed                 |                  | 5                              | 0.69               | 37.0         | 12.4         |  |
| рН                           | ldn                |                  | 5                              | 7.0                | 7.9          | 7.3          |  |
| Potassium mg/L               | Sar                | 17               | 5                              | 1.0                | 2.9          | 1.8          |  |
| Salinity mg/L                | es                 | 1 July 2017      | 5                              | 40.0               | 690          | 280          |  |
| Silicon mg/L                 | Bor                |                  | 5                              | 13.0               | 54.0         | 29.1         |  |
| Sodium mg/L                  | Coen Bores         | 1                | 5                              | 9.0                | 190.0        | 76.5         |  |
| Total Dissolved Solids mg/L  |                    |                  | 5                              | 78.0               | 780.0        | 326.0        |  |
| Sulphate mg/L                |                    |                  | 5                              | 1.7                | 22.0         | 9.2          |  |
| Turbidity NTU                |                    |                  | 5                              | 1.1                | 22.0         | 8.9          |  |





# Table 18 Coen Dam Raw Water Quality (Analysed by NATA Lab)

| Parameter                    | Sampling Location                            | Time<br>Period               | No of samples<br>taken in time | Summary of results |              |              |  |
|------------------------------|----------------------------------------------|------------------------------|--------------------------------|--------------------|--------------|--------------|--|
| Parameter                    |                                              |                              | period                         | Min<br>Value       | Max<br>Value | Avg<br>Value |  |
| Ammonia Nitrogen             |                                              |                              | 18                             | 0.020              | 0.070        | 0.24         |  |
| Nitrate (LIMS CALC)          |                                              |                              | 19                             | 0.010              | 0.06         | 0.02         |  |
| Nitrite mg/L                 |                                              |                              | 21                             | 0.010              | 0.010        | 0.010        |  |
| Alkalinity mg/L              |                                              |                              | 27                             | 9.6                | 260.0        | 29.8         |  |
| Calcium mg/L                 |                                              |                              | 27                             | 0.97               | 73.0         | 5.14         |  |
| Chloride mg/L                |                                              |                              | 27                             | 5.1                | 260.0        | 18.79        |  |
| Colour Apparent Pt/Co        |                                              |                              | 27                             | 2.1                | 150.0        | 59.2         |  |
| Electrical Conductance µS/cm |                                              |                              | 27                             | 41.0               | 1400.0       | 126.86       |  |
| Fluoride mg/L                | c                                            |                              | 27                             | 0.07               | 1.1          | 0.19         |  |
| Total Hardness mg/L          | Dan                                          |                              | 27                             | 5.8                | 320.0        | 22.19        |  |
| Magnesium mg/L               | en [                                         |                              | 27                             | 0.83               | 33.0         | 2.26         |  |
| рН                           | Coe                                          |                              | 27                             | 6.90               | 9.70         | 7.43         |  |
| Potassium mg/L               | he                                           | 22                           | 27                             | 0.74               | 5.0          | 1.2          |  |
| Salinity (psu)               | t<br>J                                       | 50                           | 19                             | 33                 | 72.1         | 44.03        |  |
| Silicon mg/L                 | froi                                         | rch                          | 19                             | 33                 | 70           | 40           |  |
| Sodium mg/L                  | ed                                           | Aa                           | 27                             | 4.8                | 170.0        | 16.84        |  |
| Total Dissolved Solids mg/L  | ldu                                          | 31                           | 27                             | 65.0               | 790.0        | 100.48       |  |
| Sulphate mg/L                | Sar                                          | to                           | 27                             | 1.0                | 22.0         | 2.43         |  |
| Turbidity NTU                | ter                                          | 117                          | 27                             | 0.2                | 54.0         | 15.1         |  |
| Arsenic mg/L                 | Na                                           | / 20                         | 24                             | 0.0080             | 0.0403       | 0.0189       |  |
| Barium mg/L                  | Ň                                            | 1 July 2017 to 31 March 2022 | 24                             | 0.0070             | 0.1560       | 0.0426       |  |
| Beryllium mg/L               | Coen Dam Raw Water Sampled from the Coen Dam | 7                            | 24                             | 0.0001             | 0.0010       | 0.0003       |  |
| Cadmium mg/L                 | Jam                                          |                              | 24                             | 0.0001             | 0.0069       | 0.0005       |  |
| Chromium mg/L                | u D                                          |                              | 24                             | 0.0002             | 0.0010       | 0.0006       |  |
| Cobalt mg/L                  | Coe                                          |                              | 24                             | 0.0005             | 0.0050       | 0.0008       |  |
| Copper mg/L                  | -                                            |                              | 24                             | 0.0010             | 0.1650       | 0.0114       |  |
| Iron mg/L                    |                                              |                              | 24                             | 0.0400             | 1.5500       | 0.4541       |  |
| Lead mg/L                    |                                              |                              | 24                             | 0.0005             | 0.0030       | 0.0011       |  |
| Manganese mg/L               |                                              |                              | 24                             | 0.0010             | 1.000        | 0.1438       |  |
| Mercury mg/L                 |                                              |                              | 23                             | 0.00006            | 0.00006      | 0.00006      |  |
| Nickel mg/L                  |                                              |                              | 24                             | 0.0001             | 0.0177       | 0.0013       |  |
| Selenium mg/L                |                                              |                              | 24                             | 0.0020             | 0.0050       | 0.0028       |  |
| Vanadium mg/L                |                                              |                              | 24                             | 0.0001             | 0.0010       | 0.0005       |  |
| Zinc mg/L                    |                                              |                              | 24                             | 0.0020             | 0.1190       | 0.0196       |  |





## Coen Site Based Drinking Water Quality Management Plan

| Parameter                                  | Sampling Location | Time<br>Period | No of samples<br>taken in time |              | Summary of results | ;            |
|--------------------------------------------|-------------------|----------------|--------------------------------|--------------|--------------------|--------------|
|                                            |                   |                | period                         | Min<br>Value | Max<br>Value       | Avg<br>Value |
| Cylindrospermopsin ug/L                    |                   |                | 4                              | 0.20         | 9.3                | 2.5          |
| Cylindrospermopsis<br>raciborskii cells/ml |                   |                | 10                             | 145          | 139,340            | 24,120       |





## Table 19 Coen Lankelly Creek Raw Water quality (Analysed by NATA Lab)

|                              |                                                | Time                         | No of samples           | Summary of results |              |              |  |
|------------------------------|------------------------------------------------|------------------------------|-------------------------|--------------------|--------------|--------------|--|
| Parameter                    | Sampling Location                              | Period                       | taken in time<br>period | Min<br>Value       | Max<br>Value | Avg<br>Value |  |
| Alkalinity mg/L              |                                                |                              | 6                       | 8.4                | 15.0         | 10.1         |  |
| Calcium mg/L                 |                                                |                              | 6                       | 0.70               | 7.40         | 1.78         |  |
| Chloride mg/L                |                                                |                              | 6                       | 13.0               | 22.0         | 15.6         |  |
| Colour Apparent Pt/Co        | Coen Lankelly Raw Water Sampled from the River |                              | 6                       | 15.0               | 36.0         | 21.9         |  |
| Electrical Conductance µS/cm |                                                |                              | 6                       | 62.0               | 100.0        | 74.3         |  |
| Fluoride mg/L                |                                                |                              | 6                       | 0.03               | 0.11         | 0.06         |  |
| Total Hardness mg/L          |                                                |                              | 6                       | 5.0                | 33.0         | 9.6          |  |
| Magnesium mg/L               |                                                |                              | 6                       | 0.76               | 3.60         | 1.25         |  |
| рН                           |                                                |                              | 6                       | 6.8                | 7.2          | 7.1          |  |
| Potassium mg/L               |                                                | 1 July 2017 to 31 March 2022 | 6                       | 1.1                | 15.0         | 3.1          |  |
| Salinity (psu)               |                                                |                              | 6                       | 35.0               | 52.0         | 40.0         |  |
| Sodium mg/L                  |                                                |                              | 6                       | 9.1                | 54.0         | 16.2         |  |
| Sulphate mg/L                |                                                |                              | 6                       | 1.0                | 1.6          | 1.1          |  |
| Total Dissolved Solids mg/L  |                                                |                              | 6                       | 55.0               | 68.0         | 68.0         |  |
| Turbidity mg/L               | L Se                                           |                              | 5                       | 1.2                | 3.3          | 1.8          |  |
| Arsenic mg/L                 | ate                                            |                              | 22                      | 0.001              | 0.023        | 0.002        |  |
| Barium mg/L                  | Ň                                              |                              | 22                      | 0.007              | 0.023        | 0.011        |  |
| Beryllium mg/L               | taw                                            |                              | 22                      | 0.0001             | 0.001        | 0.0002       |  |
| Cadmium mg/L                 | ~                                              | uly                          | 22                      | 0.0001             | 0.0069       | 0.0003       |  |
| Chromium mg/L                | (ell                                           | 1                            | 22                      | 0.0002             | 0.001        | 0.0004       |  |
| Cobalt mg/L                  | lue                                            |                              | 22                      | 0.0005             | 0.005        | 0.0007       |  |
| Copper mg/L                  | en L                                           |                              | 22                      | 0.0010             | 0.1650       | 0.0053       |  |
| Iron mg/L                    | Coe                                            |                              | 22                      | 0.0400             | 0.6240       | 0.1302       |  |
| Lead mg/L                    | _                                              |                              | 22                      | 0.0005             | 0.0005       | 0.0006       |  |
| Manganese mg/L               |                                                |                              | 22                      | 0.0010             | 0.1250       | 0.0105       |  |
| Mercury mg/L                 |                                                |                              | 4                       | 0.00006            | 0.00006      | 0.00006      |  |
| Nickel mg/L                  |                                                |                              | 22                      | 0.0020             | 0.005        | 0.0023       |  |
| Selenium mg/L                |                                                |                              | 22                      | 0.0020             | 0.005        | 0.0023       |  |
| Vanadium mg/L                |                                                |                              | 22                      | 0.0001             | 0.001        | 0.0003       |  |
| Zinc mg/L                    |                                                |                              | 22                      | 0.0020             | 0.1190       | 0.1132       |  |





# 6.2 Review of the Coen Treated Water data

Table 20 Coen WTP Final Treated Water quality (Analysed by NATA Lab)

| Parameter                     |                      | Time         | No of samples<br>taken in time | Summary of results |              |              | Australian Drinking<br>Water Guidelines | No of samples exceeding<br>Australian Drinking Water |
|-------------------------------|----------------------|--------------|--------------------------------|--------------------|--------------|--------------|-----------------------------------------|------------------------------------------------------|
| Parameter                     | Sampling<br>Location | Period       | period                         | Min<br>Value       | Max<br>Value | Avg<br>Value | guideline value<br>(2011)               | Guidelines guideline value                           |
| Alkalinity - mg/L CaCO3       |                      |              | 35                             | 6.3                | 44.0         | 20.7         |                                         |                                                      |
| Calcium - mg/L                |                      |              | 35                             | 0.86               | 6.3          | 2.4          |                                         |                                                      |
| Chloride - mg/L               |                      |              | 35                             | 6.6                | 24.0         | 17.1         | 250 mg/L                                | 0                                                    |
| Colour Apparent - Pt- Co      |                      |              | 35                             | 1.0                | 6.6          | 2.0          | 15 Pt/Co                                | 0                                                    |
| Electrical Conductance        |                      |              | 35                             | 83.0               | 180.0        | 128.8        |                                         |                                                      |
| Fluoride - mg/L               |                      |              | 35                             | 0.05               | 0.19         | 0.1          | 1.5 mg/L                                | 0                                                    |
| Total Hardness - mg/L CaCO3   |                      |              | 35                             | 5.2                | 22.0         | 12.6         | 200 mg/L                                | 0                                                    |
| Magnesium - mg/L              |                      |              | 35                             | 0.71               | 2.30         | 1.28         |                                         |                                                      |
| рН                            |                      |              | 35                             | 7.0                | 8.0          | 7.5          | 6.5 - 8.5                               | 0                                                    |
| Potassium - mg/L              | de                   |              | 35                             | 0.73               | 2.0          | 1.21         |                                         |                                                      |
| Salinity - mg/L               | Sampling Tap         | 52           | 35                             | 44                 | 89.2         | 65.6         |                                         |                                                      |
| Sodium - mg/L                 | li                   | 50           | 35                             | 13.0               | 31.0         | 19.56        |                                         |                                                      |
| Silicon mg/L                  | L L                  | <del>ک</del> | 16                             | 11.0               | 21.0         | 16.6         |                                         |                                                      |
| Total Dissolved Solids - mg/L |                      |              | 35                             | 60.0               | 120.0        | 84.9         | 600 mg/L                                | 0                                                    |
| Sulphate - mg/L               | Treated Water        | 31           | 35                             | 1.0                | 15.0         | 10.7         | 250 mg/L                                | 0                                                    |
| Turbidity – NTU               | ≥                    | Ę            | 35                             | 0.1                | 0.5          | 0.2          | ≤5 NTU                                  | 0                                                    |
| Arsenic mg/L                  | ted                  | 2017         | 23                             | 0.0002             | 0.006        | 0.002        | 0.01 mg/L                               | 0                                                    |
| Barium mg/L                   | rea                  | , 20         | 23                             | 0.002              | 0.023        | 0.126        | 2.0 mg/L                                | 0                                                    |
| Beryllium mg/L                |                      | 1 January    | 23                             | 0.0001             | 0.0010       | 0.0003       | 0.06 mg/L                               | 0                                                    |
| Cadmium mg/L                  | Fine                 | anu          | 23                             | 0.0001             | 0.0001       | 0.0001       | 0.002 mg/L                              | 0                                                    |
| Chromium mg/L                 | Coen Final           | 1            | 23                             | 0.0002             | 0.001        | 0.0005       | 0.05 mg/L                               | 0                                                    |
| Cobalt mg/L                   | Ŝ                    |              | 23                             | 0.0005             | 0.001        | 0.0006       | 0.01 mg/L                               | 0                                                    |
| Copper mg/L                   |                      |              | 23                             | 0.0010             | 0.0160       | 0.0032       | 2.0 mg/L                                | 0                                                    |
| Iron mg/L                     |                      |              | 23                             | 0.008              | 0.031        | 0.013        | 0.3 mg/L                                | 0                                                    |
| Lead mg/L                     |                      |              | 23                             | 0.0005             | 0.0010       | 0.0006       | 0.01 mg/L                               | 0                                                    |
| Manganese mg/L                | 7                    |              | 23                             | 0.0002             | 0.2040       | 0.0145       | 0.5 mg/L                                | 0                                                    |
| Mercury mg/L                  | 7                    |              | 20                             | 0.00006            | 0.0001       | 0.00006      | 0.001 mg/L                              | 0                                                    |
| Nickel mg/L                   |                      |              | 23                             | 0.0005             | 0.001        | 0.0006       | 0.02 mg/L                               | 0                                                    |
| Selenium mg/L                 |                      |              | 23                             | 0.0020             | 0.0050       | 0.0028       | 0.01 mg/L                               | 0                                                    |
| Vanadium mg/L                 |                      |              | 23                             | 0.00001            | 0.001        | 0.0004       |                                         |                                                      |
| Zinc mg/L                     | 7                    |              | 23                             | 0.005              | 0.037        | 0.0111       | 3.0 mg/L                                | 0                                                    |





|         | рН    | Turbidity<br>NTU | Colour<br>Pt/Co Units | Alkalinity<br>mg/L | Aluminium<br>mg/L | Electrical<br>Conductivity<br>uS/cm <sup>2</sup> | Free Chlorine<br>Residual mg/L |
|---------|-------|------------------|-----------------------|--------------------|-------------------|--------------------------------------------------|--------------------------------|
| Count   | 1,694 | 1,694            | 1,657                 | 109                | 190               | 110                                              | 1,691                          |
| Min     | 6.07  | 0.00             | 0.0                   | 0.9                | 0.0               | 24.0                                             | 0.31                           |
| Max     | 7.79  | 2.81             | 100                   | 59.0               | 0.28              | 264.1                                            | 4.00                           |
| Average | 6.94  | 0.38             | 2.5                   | 16.7               | 0.04              | 146.0                                            | 0.98                           |

 Table 21 Coen WTP Final Treated Water quality (Analysed by CSC Coen WTP Operators)

Dates sampled: 1 January 2017 to 31 March 2022





# 6.3 Review of the Coen Reticulation Water data

| Table 22 Coen Reticulation Treated Water quality (Analysed by NATA Lab) | Table 22 Coen Reticulation | Treated Water qu | uality (Analys | sed by NATA Lab) |
|-------------------------------------------------------------------------|----------------------------|------------------|----------------|------------------|
|-------------------------------------------------------------------------|----------------------------|------------------|----------------|------------------|

| Parameter                   |                                                | Time       | No of samples<br>taken in time | Summary of results |              |              | Australian Drinking<br>Water Guidelines | No of samples exceeding<br>Australian Drinking Water |
|-----------------------------|------------------------------------------------|------------|--------------------------------|--------------------|--------------|--------------|-----------------------------------------|------------------------------------------------------|
| Parameter                   | Sampling<br>Location                           | Period     | period                         | Min<br>Value       | Max<br>Value | Avg<br>Value | guideline value<br>(2011)               | Guidelines guideline value                           |
| Alkalinity mg/L CaCO3       |                                                |            | 34                             | 6.4                | 230.0        | 35.1         |                                         |                                                      |
| Calcium mg/L                |                                                |            | 34                             | 1.3                | 58.0         | 7.2          |                                         |                                                      |
| Chloride mg/L               |                                                |            | 34                             | 10.0               | 180.0        | 28.6         | 250 - mg/L                              | 0                                                    |
| Colour Apparent Pt- Co      |                                                |            | 34                             | 1.0                | 8.8          | 2.7          | 15 – Pt/Co                              | 0                                                    |
| Electrical Conductance      |                                                |            | 34                             | 82.0               | 1100.0       | 195.8        |                                         |                                                      |
| Fluoride mg/L               |                                                |            | 34                             | 0.04               | 0.78         | 0.16         | 1.5 - mg/L                              | 0                                                    |
| Total Hardness mg/L CaCO3   | 1                                              |            | 34                             | 5.7                | 250.0        | 29.3         | 200 - mg/L                              | 1                                                    |
| Magnesium mg/L              |                                                |            | 34                             | 0.43               | 26.0         | 2.78         |                                         |                                                      |
| рН                          | ti                                             |            | 34                             | 7.2                | 8.0          | 7.6          | 6.5 - 8.5                               | 0                                                    |
| Potassium mg/L              | cula                                           |            | 34                             | 0.75               | 1.80         | 1.16         |                                         |                                                      |
| Salinity mg/L               | etic                                           | March 2022 | 31                             | 40                 | 540          | 100          |                                         |                                                      |
| Sodium mg/L                 | - NR                                           | 1 7<br>1   | 34                             | 13.0               | 120.0        | 26.1         | 180 - mg/L                              | 0                                                    |
| Total Dissolved Solids mg/L | jee                                            | arc        | 34                             | 60.0               | 620.0        | 122.1        | 600 - mg/L                              | 1                                                    |
| Sulphate mg/L               | e O                                            | Σ          | 34                             | 5.8                | 19.0         | 11.3         | 250 - mg/L                              | 0                                                    |
| Turbidity NTU               | ] _                                            | 0 31       | 34                             | 0.03               | 1.50         | 0.46         | ≤5 - NTU                                | 0                                                    |
| Arsenic mg/L                | thi                                            | 7 to       | 18                             | 0.0002             | 0.0038       | 0.0018       | 0.01 mg/L                               | 0                                                    |
| Barium mg/L                 | Ĭ.                                             | 2017 to    | 18                             | 0.002              | 0.033        | 0.012        | 2 mg/L                                  | 0                                                    |
| Beryllium mg/L              | suo                                            |            | 18                             | 0.0001             | 0.0001       | 0.0001       | 0.06 mg/L                               | 0                                                    |
| Cadmium mg/L                | Cati                                           | 1 January  | 18                             | 0.0001             | 0.0001       | 0.0001       | 0.002 mg/L                              | 0                                                    |
| Chromium mg/L               | Lo Lo                                          | Jar        | 18                             | 0.0002             | 0.001        | 0.0005       |                                         |                                                      |
| Cobalt mg/L                 | sno                                            | 7          | 18                             | 0.0005             | 0.001        | 0.0006       |                                         |                                                      |
| Copper mg/L                 | Various Locations within the Coen Reticulation |            | 18                             | 0.001              | 0.031        | 0.007        | 2 mg/L                                  | 0                                                    |
| Iron mg/L                   | ~ ~                                            |            | 18                             | 0.008              | 0.107        | 0.019        |                                         |                                                      |
| Lead mg/L                   | 1                                              |            | 18                             | 0.0005             | 0.0011       | 0.0006       | 0.01 mg/L                               | 0                                                    |
| Manganese mg/L              | 1                                              |            | 18                             | 0.0002             | 0.0512       | 0.0053       | 0.5 mg/L                                | 0                                                    |
| Mercury mg/L                | 1                                              |            | 18                             | 0.00006            | 0.00006      | 0.00006      | 0.006 mg/L                              | 0                                                    |
| Nickel mg/l                 | 1                                              |            | 18                             | 0.0005             | 0.001        | 0.0006       | 0.02 mg/L                               | 0                                                    |
| Selenium mg/L               | 1                                              |            | 18                             | 0.002              | 0.005        | 0.003        | 0.01 mg/L                               | 0                                                    |
| Vanadium mg/L               | 1                                              |            | 18                             | 0.0001             | 0.0037       | 0.0007       | -                                       |                                                      |
| Zinc mg/L                   | 1                                              |            | 18                             | 0.005              | 0.041        | 0.013        |                                         |                                                      |





# Table 23 Coen Reticulation Total Coliforms & E.coli (Analysed by NATA Lab and Coen Lab)

| Parameter Sampling Location |                                                   | No of                              | Summa                                 | ry of results                              | Australian Drinking Water Guidelines                    | No of samples exceeding   |                                                         |
|-----------------------------|---------------------------------------------------|------------------------------------|---------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------|---------------------------------------------------------|
|                             | Sampling Location                                 |                                    | samples<br>analysed in<br>time period | No of Samples where<br>E.coli was Detected | No of Samples where<br>Total Coliforms were<br>Detected | guideline value<br>(2011) | Australian Drinking Water<br>Guidelines guideline value |
| Escherichia coli            | Various Locations within<br>the Coen Reticulation | 1 January 2017 to<br>31 March 2022 | 584                                   | 0                                          | -                                                       | <1 CFU/100ml              | 0                                                       |

#### Table 24 Coen Reticulation Trihalomethanes and Chlorates (Analysed by NATA Lab)

| Parameter             | Unit | No of<br>Samples | Summary of Results |            | ADWQ Guidelines Value<br>(2011) | No of Samples exceeding ADWG or<br>WHO |        | Time period |                   |
|-----------------------|------|------------------|--------------------|------------|---------------------------------|----------------------------------------|--------|-------------|-------------------|
|                       |      | collected        | Min. Value         | Max. Value | Avg. Value                      |                                        | Health | Aesthetic   |                   |
| Chloroform            | μg/L | 15               | 5                  | 19         | 36                              | <250 μg/L                              | 0      | -           |                   |
| Bromodichloromethane  | μg/L | 15               | 5                  | 22         | 11                              | <250 μg/L                              | 0      | -           |                   |
| Dibromochloromethane  | μg/L | 15               | 5                  | 5          | 5                               | < 250 mg/L                             | 0      | -           | 1 October 2018 to |
| Bromoform             | μg/L | 15               | 5                  | 10         | 6                               | <250 μg/L                              | 0      | -           | 31 March 2022     |
| Total Trihalomethanes | μg/L | 15               | 8                  | 47         | 15                              | <250 μg/L                              | 0      | -           |                   |
| Chlorate              | mg/L | 15               | 0.161              | 1.690      | 0.573                           | <0.7 mg/L*                             | 5      | -           |                   |

## Table 25 Coen Raw water E. Coli (Analysed by Coen WTP Lab)

|                             |                |                                | No of                                 | Summary of Results |            |            |  |
|-----------------------------|----------------|--------------------------------|---------------------------------------|--------------------|------------|------------|--|
| Parameter Sampling Location |                | Time<br>Period                 | samples<br>analysed in<br>time period | Min. Value         | Max. Value | Avg. Value |  |
| Escherichia coli            | Coen Dam       | 1 July 2018 to 31<br>July 2022 | 119                                   | 0                  | 98         | 15         |  |
| Escherichia coli            | Lankelly Creek | 1 July 2018 to 31<br>July 2022 | 59                                    | 2                  | 970        | 90         |  |
| Escherichia coli            | Bores          | 1 July 2018 to 31<br>July 2022 | 32                                    | 1                  | 150        | 32         |  |



